Zika Virus Vaccine Efforts

Tanima Sinha, MSc, MScPh
Lead Interdisciplinary Scientist
HHS/OS/ASPR/BARDA/IEIDD
June 26, 2018
ASPR’s Mission

Save Lives and Protect Americans from 21st Century Health Security Threats
Establishment of BARDA

- **PBS – 2004**
 - $5.6B advanced appropriation to develop Medical Counter Measures (MCMs) against Chemical, Biological, Radiation, and Nuclear (CBRN) threats

- **PAHPA – 2006**
 - Established the ASPR and BARDA
 - BARDA threat space: CBRN, Pandemic Influenza (PI), and Emerging Infectious Diseases
 - Authority to invest in Advanced Research and Development (ARD) and Emergency Use Authorizations

- **PAHPRA – 2013 21st Century Cures Act – 2016**
 - New, yearly funds for ARD: $415M
 - Reauthorization of Project BioShield (PBS): $2.8B
 - PI was not included
 - Historic investments $350-$400M annually with supplemental

- **21st Century Cures Act – 2016**
 - Restore BARDA Contracting
 - Medical Countermeasures Innovation Partnership (MCIP) Program
The BARDA Model

• BARDA develops and makes available medical countermeasures (MCMs) by forming unique public-private partnerships with industry partners
BARDA Zika Priorities

1. Detect Zika Infection
 - Support advanced development of rapid serological diagnostics, including point of care, for the detection of antibodies in persons previously infected with Zika virus

2. Prevent Zika Infection
 - NIH/DOD/BARDA collaboration for USG-developed, manufactured, and evaluate Zika virus vaccine
 - NIH and BARDA to support private sector development of vaccine through federal funding opportunities
 - HHS to support international collaborations, including vaccine production at the Butantan Institute in Brazil

3. Secure and protect blood supply
 - Support advanced development of high throughput molecular diagnostics for screening blood supply
 - Support late stage pathogen reduction systems
Prevent Zika Virus Infection

- Vaccine for other flaviviruses have been developed and used for over 70 years
- Active development programs for Dengue and West Nile vaccines have been ongoing for over 30 years, explored a variety of vaccine platforms to develop vaccines for these flaviviruses
- Experiences gained and vaccine platforms developed for other flaviviruses are being leveraged for ZIKV vaccine development
Walter Reed Army Institute of Research

- Zika Purified Inactivated Vaccine (ZPIV)
 - Based on JEV vaccine technology
 - Formalin inactivated, alum adjuvanted virus
- Phase 1 clinical trials
 - Naïve vs. YF or JE vaccinated
 - Dose optimization
 - Accelerated schedule
 - Natural flavivirus immunity
- Successful proof of concept and tech transfer to Sanofi Pasteur
Sanofi Pasteur ZPIV

Halted vaccine development
 ▪ Corporate decision

Case Definition Study
2400 subjected enrolled, (400 Puerto Rico, [1 site], 700 Colombia [1], 500 Honduras [1] and 800 Mexico [2])
 • Sample and data analysis is on-going
Takeda Zika Virus Vaccine, ZIPV

- Developing a whole inactivated Zika virus vaccine to be administered with alum adjuvant

- Initiated Phase 1 Clinical Trial of Zika Vaccine Candidate – November 2017
 - Safety and immunogenicity in 240 subjects
 - 3 doses (2, 5, 10 ug) placebo controlled
 - Ages 18-49
 - Sites in the continental U.S. and Puerto Rico
 - Vaccinating flavivirus naïve and primed
VRC DNA Vaccine Milestones

- Phase 1 Clinical Trials – 2 candidates: VRC 5288 and VRC 5283
 - Interim data reported in Lancet, Dec. 2017 (Gaudinski et al)
 - Zika neutralizing antibodies developed in 100% of subjects
- Phase 2a/2b Clinical Trial – VRC 5283
 - Part A: Dose Escalation and Injection Number Study
 - Enrollment complete
 - Immunogenicity evaluation ongoing
 - Part B: Efficacy Study
 - Regimen selected May 2017
 - Enrollment initiated July 2017
 - Study is on-going
- Industry partner identified for commercialization
Moderna mRNA Vaccine

- Vaccine Delivery Approach

- Rapid, multi-product platform potential

- New construct
 - 10ug dose superior to 200ug

![Diagram of mRNA vaccine delivery]
Pentavalent DENV + ZIKV

![Diagram of pentavalent virus construction and timeline](image)

Pre-clinical development
- **Δ3**
 - 3′ rDEN1Δ30
 - 3′ rDEN2Δ30
 - 3′ rDEN3Δ30/31
 - 3′ rDEN4Δ30
 - 3′ rZIKV/Δ4Δ30

Phase III underway
- 5′
 - CprM E NS1 NS2A NS2B NS3 NS4A NS4B NS5

Timeline

<table>
<thead>
<tr>
<th>#</th>
<th>Deliverable</th>
<th>Timeline (CY)</th>
<th>DONE?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Virus construction, seed virus generation, pre-clinical evaluation</td>
<td>Q2 2017</td>
<td>√</td>
</tr>
<tr>
<td>2</td>
<td>Manufacturing of Phase 1 and 2 CTM’s at Charles River Laboratories; Release testing</td>
<td>June – Nov 2017</td>
<td>√</td>
</tr>
<tr>
<td>3</td>
<td>IND submission</td>
<td>Feb 2018</td>
<td>Initiated</td>
</tr>
<tr>
<td>4</td>
<td>Phase 1 - Monovalent</td>
<td>March 2018</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Phase 2 - Pentavalent</td>
<td>May 2018</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Phase 2a – Butantan Institute Bridging, Monovalent, Pentavalent</td>
<td>Pending Q4 2018</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Phase 2b – Butantan Institute</td>
<td>Pending 2019</td>
<td></td>
</tr>
</tbody>
</table>

Courtesy: S. Whitehead, LVD/NIAID
USG Task Orders Supporting Zika Vaccine Development

GENERATION OF CHALLENGE VIRUS (PRVABC59)
- CoA: PFU/ml, Genomes/ml, Endotoxin, Mycoplasma, Sequence, Documented passage history

NATURAL HISTORY STUDY
- Dose Ranging
- Re-Challenge
 - Viral loads
 - Immune response
 - Correlates of protection
- Challenge
 - Viral loads
 - Tissue distribution
 - Immune response

PASSIVE TRANSFER/CHALLENGE MODEL
- Purify and characterize polyclonal IgG
- IgG Pharmacokinetic profile
- Passive transfer/challenge study in mice

Benefits to MFRs
- Protocols
- Reagents
- Qualified assays

PRECLINICAL DATA PACKAGE

Assays
- PFU, RT-qPCR, PRNT, MN, RVP
- Development, Qualification

NIAID
- Preclinical testing in NHP model

TO 19
- Assays

TO 26
- Bio-AMT-1004, Bio-AMT-1008
Emergent BioSolutions and Valneva Initiate Phase 1 Clinical Study to Evaluate Vaccine Candidate Against Zika Virus

Gaithersburg, Md. and LYON, France, Feb 26, 2018 (GLOBE NEWSWIRE) -- Emergent BioSolutions Inc. (NYSE:EBS) and Valneva SE (Euronext Paris:VLA) today announced the initiation of a Phase 1 clinical trial in the U.S. to evaluate the safety and immunogenicity of VLA1601, their vaccine candidate against Zika virus.

The Phase 1 clinical trial is a randomized, observer-blinded, placebo-controlled, single center study. This study, in approximately 65 healthy adults, will investigate two dose levels of VLA1601 when administered using two different vaccination schedules. Initial data from the trial are expected to be available in late 2018 or early 2019.
Inovio Pharmaceuticals DNA Vaccine

- DNA plasmid vaccine expressing Zika prM-E
- Two groups of 20 received 1mg or 2 mg ID at 0, 4, 12 weeks w/electroporation
- No SAEs reported
- Anti-Zika antibodies detected in 100% in both groups
- Zika neutralizing antibodies developed in 62% of subjects
- Passive transfer of human vaccinee serum protected in a lethal mouse model
PRESS RELEASE

Zika Virus: Themis Bioscience Initiates Worldwide First Study With Live Attenuated Recombinant Vaccine

Vienna, Austria, 11-Apr-2017 – A promising vaccine for the Zika virus is now being tested by Themis Bioscience GmbH, a specialized biotech company developing prophylactic vaccines against emerging tropical infectious diseases. After recent progress with the development of a Chikungunya vaccine the company succeeded in swiftly adapting their proprietary vaccine technology for their Zika vaccine program.

This program is based on a live attenuated recombinant vaccine that promises a fast and effective immune response.
Zika Virus Vaccines Landscape – June 2018