Medication Management of Epilepsy

Supported by HRSA MCHB Cooperative Agreement Number U23MC26252
Overview

- Acute or rescue management of seizures
- Chronic treatment of epilepsy
- Status epilepticus (discussed in a separate session)
Acute (rescue) Management of Seizures
Abortive Agents – Overview

• Benzodiazepines for a prolonged seizure
 • Mechanism of action of benzodiazepines
 • Binds to GABA receptor and reduces the excessive excitation in the brain
 • Administration routes
 • Oral, intravenous, intramuscular, rectal, intranasal, buccal

Sources:
• http://www.sec.gov/Archives/edgar/data/946840/000119312512399193/d414342dex991.htm
• http://online.lexi.com.libproxy.unm.edu/lco/action/home
Abortive Agents – Overview

• Benzodiazepines for a prolonged seizure
 • FDA-approved medications among benzodiazepines

<table>
<thead>
<tr>
<th>Benzodiazepine</th>
<th>FDA approved for status epilepticus</th>
<th>FDA approved for treatment of seizures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clonazepam</td>
<td>No – off-label use</td>
<td>Yes</td>
</tr>
<tr>
<td>Diazepam</td>
<td>Yes (rectal gel)</td>
<td>Yes</td>
</tr>
<tr>
<td>Lorazepam</td>
<td>Yes; parenteral only</td>
<td>No – off-label use (focal seizures)</td>
</tr>
<tr>
<td>Midazolam</td>
<td>No – off-label use</td>
<td>No – only for sedation</td>
</tr>
</tbody>
</table>

Source: http://online.lexi.com.libproxy.unm.edu/lco/action/home
Abortive Agents – Overview

• **Commercially** available formulations at outpatient setting
 • Diazepam – rectal gel
 • Clonazepam – tablet (wafer, disintegrating tablet [ODT])

• **Conditionally** available formulations at outpatient setting
 • Midazolam – intranasal or buccal
 • May be available at compounding pharmacy
 • Need a special devise to make mist (atomizer) for intranasal formulation
Diazepam

- Administration route: rectal
- Formulation: gel
- Dose – dose may be repeated if needed
 - Children <2 years: Safety and efficacy have not been studied
 - Children 2-5 years: 0.5 mg/kg
 - Children 6-11 years: 0.3 mg/kg
 - Children 12 years or above: 0.2 mg/kg
Midazolam

• Administration route: IM or IN
• Formulation
 • Solution for IV, IM, IN, buccal
 • Syrup
 • Buccal (UK, not available in the US)
• Dose for prehospital treatment
 • 13 - 40 kg: 5 mg once
 • >40 kg: 10 mg once

Sources
• http://www.hospira.com/products_and_services/drugs/MIDAZOLAM HYDROCHLORIDE
• http://www.mims.co.uk/news/1106012/Buccolam-licensed-buccal-midazolam-product/
• http://online.lexi.com.libproxy.unm.edu/lco/action/doc/retrieve/docid/patch_f/7296
IN midazolam

• Gerrit-Jan de Haan et al. (2010)
 • Primary outcome: comparisons between diazepam (rectal) and midazolam (intranasal) in efficacy, safety, and preference

• Study population
 • Adults (N = 21)
 • Male: 13 (61.9%)

• Dose
 • Diazepam (DZP): 10 mg
 • Midazolam (MDZ): 2.5 mg

Source:
IN midazolam

• Gerrit-Jan de Haan et al. (2010)
 • Results
 • Success rate
 • DZP 89% vs. MDZ 82% (NS)
 • Time to stop seizures: NS
 • ADRs
 • No severe ADRs were observed
 • More CNS ADRs in DZP group; more local irritation in MDZ group
 • Preference (easy to use)
 • MDZ > DZP ($p<0.001$)

<table>
<thead>
<tr>
<th>Table 2. Efficacy of DZP-r and MDZ-n in suppressing seizure exacerbations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>DZP-r</td>
</tr>
<tr>
<td>MDZ-n</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

* $p = 0.57$ (not significant); ** $p = 0.6$ (not significant). min., minutes; SD, standard deviation. DZP-r, diazepam rectal solution; MDZ-n, midazolam nasal spray.

Source:
Clonazepam

- High potency benzodiazepine
- Administration route
 - Oral
- Formulation
 - Disintegrating tablet (wafer)
 - Dissolve in oral cavity
Clonazepam

• Onset (adult data)
 • Rapid; peak plasma concentrations in one to four hours

• Bioavailability (adult data): 90%

• Half-life
 • Children: 22-33 hours
 • Adults: 17-60 hours

• Available strength (Clonazepam Wafers)
 • 0.125 mg, 0.25 mg, 0.5 mg, 1 mg, 2 mg

Sources:
• http://online.lexi.com.libproxy.unm.edu/lco/action/doc/retrieve/docid/patch_f/6642#f_pharmacology-and-pharmacokinetics
Summary

• Three benzodiazepine drugs have been used to stop prolonged seizures at outpatient setting

• Each benzodiazepine and its formulation are different in pharmacokinetics and caregiver’s preference

• Select appropriate rescue medicine in accordance with patient’s needs, such as social factors (e.g., patient’s or caregiver’s preference)
Suggested Rational Use:

• What abortive agent would you recommend for this situation? **Diazepam rectal**
 • Appropriate for younger children when a seizure lasts three to five minutes
• What if the patient has multiple seizures within a short period (cluster)? **Clonazepam ODT**
 • Appropriate for clusters of seizures
• What if he is a teenager? **Intranasal midazolam**
 • Appropriate for older children
 • May become the drug of choice for all rescue
 • Exception: short half-life may not help with clusters
Chronic Treatment of Epilepsy

Anti-seizure medications
To Treat or Not To Treat

- Risk factors for seizure recurrence
 - Remote symptomatic etiology
 - Abnormal EEG
 - Seizure occurring while asleep
 - History of prior febrile seizures
 - Todd’s paresis
Risk of Seizure Recurrence After a Single, Unprovoked Seizure; 2 yr f/u

<table>
<thead>
<tr>
<th>Seizure type</th>
<th>EEG normal</th>
<th>EEG epileptiform, or exam abnormal</th>
<th>Both abnormal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalized</td>
<td>25%</td>
<td>50%</td>
<td>75%</td>
</tr>
<tr>
<td>Partial</td>
<td>50%</td>
<td>75%</td>
<td>>90%</td>
</tr>
</tbody>
</table>

~90% of recurrences are within 2 years

Data from Camfield & Camfield 1985.
The Ideal Medicine For Epilepsy

- Effective
- Safe
- Few side effects
- Easily absorbed
- Few daily doses
- No drug interactions
- Inexpensive
- Kid friendly formulation

NONE EXISTS
Choice of AEDs

• Based on
 • Seizure type/epilepsy syndrome
 • Age:
 • Valproate not the preferred drug <2 years
 • Phenobarbital still the drug of choice in neonatal seizures, although other drugs like topiramate/levetiracetam can be used
 • Co-morbidities
 • Weight, other medical conditions (e.g: hepatic or renal disease), other medications

• The most effective Rx is with a single drug, chosen on the basis of epilepsy syndrome (and type of seizure) and titrated to the seizure control or side effects

• Problems with polytherapy
 • Additive side effects
 • Drug interactions
Choice of AEDs

• Common choices
 • Generalized epilepsy:
 • ethosuximide, valproate, lamotrigine, topiramate, zonisamide, levetiracetam.
 • Carbamazepine/oxcarbazepine not preferred in generalized epilepsies for risk of absence status
 • Focal epilepsy:
 • Oxcarbazepine often preferred, other drugs such as levetiracetam, lamotrigine, topiramate, zonisamide, valproate, lacosamide can also be used
Traditional Drugs of Choice for Seizures

FOCAL ONSET

GENERALIZED ONSET
Absence
Tonic-clonic

{ Oxcarbazepine
 Carbamazepine
 Phenytoin (esp acutely)
}

{ Ethosuximide
 Levetiracetam
}

Valproate
Lamotrigine
Topiramate
Zonisamide
Lacosamide
Ethosuximide

• Commonly used for treating absence epilepsy
• Inexpensive
• Main Side Effects
 • Dizzy / unsteady
 • GI upset
 • Sedation
 • Can cause mild lowering of WBC counts
Phenytoin/Fosphenytoin

- Phenytoin is the most used medication since 1938
- Can be once-a-day, available in IV form
- Main Side Effects
 - Dizzy / unsteady
 - Gingival hypertrophy
 - Cosmetic (long term use associated with coarsening of features)
 - Rash
 - Long-term: Osteomalacia, Neuropathy
Oxcarbazepine

- Preferred drug for focal seizures
- Structurally similar to carbamazepine, with an oxygen molecule, fewer drug interactions
- Better tolerated than carbamazepine
- May stabilize mood
- Can be taken BID
- Main Side Effects:
 - Blurry vision
 - Dizzy / Uncoordinated/ Fatigue
 - Stomach upset
 - Low blood sodium
Valproic Acid

- Broad spectrum, including generalized
- May stabilize mood problems, help headaches
- Main Side Effects:
 - Weight gain
 - Hair loss
 - Tremor
 - Rare blood or liver injury, pancreatitis
 - Menstrual irregularities, PCOS
 - Higher risk of fetal neural tube defects
 - AVOID in children under 2 and with suspected mitochondrial (POLG) disorder
Lamotrigine

- Broad spectrum against seizures: used in absence epilepsy, JME, LGS, focal epilepsies
- Can be once (or twice) a day
- Can stabilize mood
- Main Side Effects:
 - Rash, including Steven Johnson syndrome
 - Fatigue
 - Unsteadiness
 - AVOID in Sodium channel defects (Dravet syndrome): can make epilepsy worse
Topiramate

• Broad spectrum action
• Can also help migraines
• Main Side Effects:
 • Slow / Fuzzy thinking/Speech difficulties
 • Kidney stones in ~ 2%
 • Weight loss/anorexia
 • Anhydrosis
 • Rarely glaucoma
 • Rare psychiatric problems
Levetiracetam

- Broad spectrum
- Commonly used for treating JME
- Few drug interactions
- Main Side Effects
 - Dizzy / Uncoordinated
 - Fatigue
 - Rare psychiatric effects: aggression, irritability
Zonisamide

• Broad spectrum action
• Good for myoclonic seizures
• Can be once-a-day
• Structurally related to sulfa drugs: need to check for sulfa allergy
• Main Side Effects:
 • Slow / Fuzzy thinking
 • Kidney stones in ~ 2%
 • Anorexia
 • Anhydrosis
 • Rare psychiatric problems
New Anti-Seizure Drugs

• Lacosamide
• Rufinamide
• Ezogabine
• Perampanel
• Clobazam
• Stiripentol (not freely available in the US)
Lacosamide

- FDA approved in Europe in August 2008, USA in October 2008
- Indication: Adjunctive treatment for focal seizures in patients ≥ 17 years of age.
- Mechanism of Action
 - Enhancement of slow inactivation of Voltage Gated Sodium channels (VGSC)
 - Binds to collapsin response mediator protein (not clear if this contributes to the anti-seizure action).
 - Postulated to contribute to neuroprotective effects vs apoptosis and glutamate
Lacosamide

Mechanism of Action

• Enhancement of slow inactivation of Voltage Gated Sodium channels (VGSC)

• It also binds to collapsin response mediator protein (not clear if this contributes to the anti-seizure action). Postulated to contribute to neuroprotective effects vs apoptosis and glutamate
Lacosamide

- Adult Dose: up to 200 mg/day
- Pediatric doses 1-5 mg/kg/day (can go higher)
- Formulation
 - Tablets, oral solution, IV infusion
- Covered by insurance
Lacosamide: Side effects

- Side effects similar to other Anti-seizure drugs: somnolence, fatigue, dizziness, nausea, blurred vision
- Cardiac effects:
 - Related to dose dependent enhancement of slow inactivation of cardiac sodium channels
 - Prolongation of PR interval, second degree AV block, atrial fibrillation/flutter (at high doses)
 - Transient 3rd degree AV block reported after IV Lacosamide use for status epilepticus
Rufinamide

- FDA approved in November 2008 as adjunctive treatment in LGS for children over 4 and adults
- Structurally unrelated to other Anti-seizure drugs
- Mechanism of action not fully understood
- Prolongation of the inactivated state of Sodium channels, limiting the firing of Sodium dependent action potentials
- Probably has broader spectrum of action than the typical Na-channel blockers (PHT, LMT, CBZ, OXC)
Rufinamide

- Dose: 5-45 mg/kg/day
- Formulation
 - Tablets: 200, 400 mg
 - Oral solution: 200 mg/5 ml
- Covered by insurance (may need LGS as diagnosis for prior authorization)
Rufinamide

- Double blind randomized placebo controlled trial of Rufinamide in LGS (Glauser et al 2008)
- 138 patients randomized to Rufinamide or placebo
- Median % reduction in seizures: 32.7% vs 11.7%
- Improvements in seizure severity and improvements in tonic-atonic seizures
Rufinamide

• Side effects
 • Somnolence, vomiting, headache
 • Rash
• Interaction with valproate, requiring a lower daily dose
• Cardiac effects: can shorten QT interval
• Not clear if clinically significant (Schimpf et al, Heart Rhythm 2012)
Clobazam

- Newly approved by the US FDA for LGS in children ≥ 2 years of age
- 1,5 benzodiazepine, which is structurally different from the traditional ones (1,4 benzos) such as diazepam
- Less acidophilic and less lipophilic than the 1,4’s; so may be less sedating and less likely to cause tolerance
Clobazam

- Benzodiazepine
- 1,5 benzodiazepine, which is structurally different from the traditional ones (1,4 benzos) such as diazepam
- Less acidophilic and less lipophilic than the 1,4’s; so may be less sedating and less likely to cause tolerance
Clobazam

- **Dose:** 0.5-1 mg/kg (higher doses have been used)
- **Formulation:** 10, 20 mg tabs (can be crushed, but not dissolvable), 2.5 mg/ml oral solution
- **Insurance:** covered, may needs prior auth. May be more of a problem if diagnosis is not LGS
- **Side effects**
 - Sedation, inco-ordination, agitation
 - Weight gain
Treatment of Common Childhood Epilepsies
Childhood Absence Epilepsy

- Drug of choice = ethosuximide

- Randomized-controlled trial:
 - Ethosuximide = valproic acid for efficacy
 - Lamotrigine lower efficacy
 - Lamotrigine > ethosuximide > valproic acid for cognitive side effects

Juvenile Myoclonic Epilepsy

Traditionally, **valproate** has been the treatment of choice for JME.

Side effects: tremor, weight gain, menstrual irregularity, teratogenic (neural tube) defects, pancreatitis.

Drugs used in preference over valproate: **Levetiracetam**, lamotrigine, topiramate, zonisamide, clobazam.

Source: Crespel et al, Epilepsy Behav. 2013
Focal Epilepsies

• Focal epilepsies
 • Carbamazepine, oxcarbazepine

• Rolandic Epilepsy (BECTS)
 • Carbamazepine, oxcarbazepine
 • Gabapentin (Bougeois et al)
Lennox Gastaut Syndrome

- Generally anti-seizure drugs with a broad spectrum are preferred
 - Sodium valproate
 - Lamotrigine
 - Topiramate
 - Felbamatate
 - Benzodiazepines such as clobazam
 - Rufinamide
Infantile Spasms

- ACTH (adrenocorticotropic hormone), prednisolone
- Vigabatrin (drug of choice in tuberous sclerosis)
- Ketogenic diet (discussed in another session)
- Less commonly used treatments:
 - Sodium valproate, topiramate, benzodiazepines