Welcome to the spring 2016 edition of the SOATT Newsletter! I'm thrilled to report that our Section received the Outstanding Service in Innovation Award at the AAP’s 2016 Annual Leadership Forum (ALF) in March. The award recognizes the Section’s role in facilitating the global pediatric clinical trials network to improve testing / disseminating drugs and devices for children, which has resulted in the formation of the Pediatric Trials Consortium (PTC; www.c-path.org/ptc). Dr. Mitch Goldstein and Jackie Burke were present at the ALF to receive the award on behalf of the Section. Only 6 of the more than 50 AAP Sections were selected to receive such an honor this year. As you read through the pages of this newsletter, please continue to think of creative ways that our Section can make an innovative impact in the lives of children and their families. Thank you!

Section on Advances in Therapeutics and Technology Wins Innovation Award

The Section on Advances in Therapeutics & Technology won a Section award for Innovation at the 2016 AAP Annual Leadership Forum (ALF) for the planning and execution of the Pediatric Clinical Trials Stakeholder Forum, which led to the current work on the formation of the Global Pediatric Clinical Trials Network.

Way to Go SOATT!

Reflections from the Chair
Section on Advances in Therapeutics and Technology

Welcome to the spring 2016 edition of the SOATT Newsletter! I’m thrilled to report that our Section received the Outstanding Service in Innovation Award at the AAP’s 2016 Annual Leadership Forum (ALF) in March. The award recognizes the Section’s role in facilitating the global pediatric clinical trials network to improve testing / disseminating drugs and devices for children, which has resulted in the formation of the Pediatric Trials Consortium (PTC; www.c-path.org/ptc). Dr. Mitch Goldstein and Jackie Burke were present at the ALF to receive the award on behalf of the Section. Only 6 of the more than 50 AAP Sections were selected to receive such an honor this year. As you read through the pages of this newsletter, please continue to think of creative ways that our Section can make an innovative impact in the lives of children and their families. Thank you!

Mitch Goldstein, MD, FAAP (right) and Jackie Burke, SOATT section manager (left) accept an award for the SOATT’s outstanding service in innovation at the 2016 Annual Leadership Forum.
The SOATT is dedicated to promoting all areas of innovation in the pediatric healthcare field, and especially in the areas of digital health, therapeutics, and medical devices.

It is well known that pediatric device development lags the progress made in the adult device field or in the other pediatric innovation fields. However, I share a few personal experiences that occurred in a recent month earlier this year that, in my mind, reflects the growing ecosystem in pediatric device innovation that goes beyond the borders of cities to become a truly national effort:

• Representatives from the FDA-funded Pediatric Device Consortia (www.FDA.gov/PDC) in Atlanta, Boston, Michigan, New England, Philadelphia, Southern California, and Washington DC met in Atlanta in mid-February to share their experiences and foster collaborations. Over 775 pediatric device projects have been supported through the consortia since 2009.

• The Stanford Biodesign program hosts an Executive Course in “Managing Innovation” that provides the opportunity to apply the Biodesign innovation process to a major institutional challenge (biodesign.stanford.edu). This included a tour of the Fogarty Institution for Innovation in Mountain View, California, whose chairman is Dr. Tom Krummel (www.fogartyinstitute.org).

• Dr. Julie Hakim, a pediatric gynecology fellow at Texas Children’s Hospital/Baylor College of Medicine won a $50K Device Innovation Award from the National Capital Consortium for Pediatric Device Innovation in Washington DC (innovate4kids.org) for the vaginal stents and dilators that she is developing for children with congenital genital-urinary anomalies.

• At the Impact Pediatric Health pitch competition at SXSW in Austin, TX (impactpediatrichealth.com) in mid-March, Cohero Health from New York won the 1st prize of $50K for its pediatric asthma medication management platform. Noninvasix, this edition’s Pediatric Device Spotlight subject that is based in Texas, placed 2nd.

This edition of the SOATT newsletter features a description of the new FDA – NIH BEST (Biomarker, EndpointS, and other Tools) Resource project by Dr. Vasum Peiris, the new Chief Medical Officer – Pediatrics and Special Populations Office of the Center Director in the Center for Devices and Radiological Health at the FDA. In addition, Tiffany Wilson, the Executive Director of the Global Center for Medical Innovation (GCMI), provides a description of the robust innovation ecosystem that supports pediatric device development.
innovation in Atlanta. We also highlight a pediatric medical device company in our Spotlight on Noninvasix, which is developing a novel technology to minimize cerebral ischemic injury in preterm infants with optoacoustics.

We look forward to seeing you at this fall’s NCE meeting in San Francisco and especially at the Section’s program on pediatric innovation.

We hope that you enjoy reading this edition of the newsletter, and please share it with a colleague, patient, or friend. We welcome all suggestions for articles. It is an avenue of communication for our Section, and for those who share the passion of caring for children and improving our care for children.

Pediatric Medical Device Resource List:

FDA-funded Pediatric Device Consortia (PDC) – a resource for pediatricians, pediatric caregivers, and pediatric specialists in developing their innovative pediatric medical device projects. Available assistance can include consulting, project management, and bridge funding.

Further details can be found in the previous editions of the newsletter at: https://www.aap.org/en-us/about-the-aap/Committees-Councils-Sections/soatt/Pages/newsletters.aspx

Atlantic Pediatric Device Consortium
(Georgia Institute of Technology / Emory University / Children’s Healthcare of Atlanta / Virginia Commonwealth University Institute for Engineering and Medicine)
atlanticpediatricdeviceconsortium.org

Boston Pediatric Device Consortium
(Boston Children’s Hospital / Harvard Medical School)
www.childrenshospital.org

National Capital Consortium for Pediatric Device Innovation
(Children’s National Health System / University of Maryland)
innovate4kids.org

New England Pediatric Device Consortium
(Simbex / CIMIT / IPI / Mass General Hospital for Children / Dartmouth University)
nepdc.org

Philadelphia Regional Pediatric Medical Device Consortium
(Children’s Hospital of Philadelphia / University of Pennsylvania / Drexel University)

Southern California Consortium for Technology and Innovation in Pediatrics
(Children’s Hospital Los Angeles / University of Southern California)
scctip.com

University of California San Francisco Pediatric Device Consortium
(University of California San Francisco)
pediatricdeviceconsortium.org

University of Michigan Pediatric Device Consortium
(University of Michigan)
peddev.org
I am pleased to let you know that the BEST (Biomarkers, EndpointS, and other Tools) Resource is now available at: http://www.ncbi.nlm.nih.gov/books/NBK326791/. In the spring of 2015 the FDA-NIH Joint Leadership Council identified the harmonization of terms used in translational science and medical product development as a priority need, with a focus on terms related to study endpoints and biomarkers. Working together with the goals of improving communication, aligning expectations, and improving scientific understanding, the two agencies developed the BEST Resource. The first phase of BEST comprises a glossary that clarifies important definitions and describes some of the hierarchical relationships, connections, and dependencies among the terms it contains.

The BEST glossary aims to capture distinctions between biomarkers and clinical assessments and to describe their distinct roles in biomedical research, clinical practice, and medical product development. Because the glossary is intended to be broadly applicable to multiple communities of users and stakeholders, its definitions address nuances of usage and interpretation for a wide variety of terms currently in use. Further, based on differing stakeholder needs, it has built in flexibility, when possible and appropriate, to accommodate those interests. NIH and FDA intend to use the definitions included in this glossary when communicating on topics related to its contents (e.g., biomarkers) to ensure a consistent use of the terms and therefore, a common understanding of the issues.

The BEST glossary is meant to be a “living” resource that will be periodically updated with additional terms and clarifying information. We welcome feedback, including specific proposed edits with rationale, from all stakeholders, including the scientific and medical communities, patients, providers, industry, and regulators, so that as we refine and elaborate on these terms, they will remain relevant, thus fostering consistent usage and ultimately help to accelerate development and refinement of medical products which lead to improvements in health outcomes. Suggested revisions will be considered on a regular basis. Comments can be submitted by clicking the “Send Feedback” link on the right of the page under “Additional Information”.

Information on the FDA-NIH Joint Leadership Council: http://www.fda.gov/ScienceResearch/SpecialTopics/RegulatoryScience/ucm201654.htm

Developing a Robust Innovation and Entrepreneurial Ecosystem to Support Pediatric Device Innovation (Atlanta)

Tiffany Wilson, MBA
Executive Director, Global Center for Medical Innovation (GCMI)
Atlanta, Georgia
twilson@devices.net
www.devices.net

The Global Center for Medical Innovation (GCMI) is the Southeast U.S.’s first and only comprehensive medical device innovation center, dedicated to accelerating development, building businesses and improving health. Launched in 2012, our organization has worked with over 50 different startups, clinician innovators, university tech transfer offices and academic researchers to design, engineer, prototype, and facilitate commercialization of a broad range of innovative medical devices. We are focused on building a best-in-breed medical technology innovation and investment ecosystem by collaborating with multiple partners and experts to advance new technology.

GCMI’s core team of designers and engineers collaborate closely with startups, clinicians, researchers, new product development teams and medtech entrepreneurs to accelerate time to market while reducing costs. Our independent, 501(c)(3) non-profit organization has a robust and ever-growing network of experts, including intellectual property, regulatory, quality systems and investors, to help bring ideas from concept to market. In addition, through a close collaboration with our development partner, T3 Labs, medical device entrepreneurs and new product development teams have all of the critical resources they need to efficiently bring new products from an idea through GLP preclinical studies, all in Midtown Atlanta.

One of GCMI’s core areas of focus is supporting development and commercialization of innovative pediatric devices. Our organization is working closely with Georgia Tech, Children’s Healthcare of Atlanta, and the Atlantic Pediatric Device Consortium (APDC) to provide product development expertise, small volume production, industry connectivity, and overall support of commercialization objectives. Based on this work, we are beginning to work with pediatric device inventors across the country to support this most precious patient population — our kids.

There are several key elements Atlanta possesses that are helping us build a robust medtech innovation and entrepreneurship ecosystem in our city and across the region, including:

1. **Top Technical Talent**

 Atlanta has a tremendous pool of engineering and tech talent. Atlanta is home to Georgia Tech, Southern Poly, GSU and more than 10 other institutions of higher education. The remarkable people studying, researching and teaching at these institutions are highly skilled engineers who provide not only the technical solutions need to build game-changing medical technology innovation; they are in many cases the ideators and innovators themselves.

2. **Clinicians (and patients)**

 Home to more than 20 hospitals, Atlanta provides access to more than enough clinicians and patients needed to support the multiple stages of medical technology innovation and development, including the pediatric population. The engineering expertise described above plus a leading medical school like Emory University and expertise at Children's Healthcare of Atlanta creates a powerful combination.

 Medtech innovation is born from collaborations between engineers and the clinical community who have first hand knowledge and pain points that affect hospital efficiency and patient outcomes.

3. **The connectors and collaborators – Atlanta excels at tying people and resources together.**

 Atlanta has as much, if not more, ability on the front end of collaborative effort and infrastructure required to support efficient “concept to first-in-man studies” as any medtech ecosystem in the United States. When you add in the regional resources that SEMDA brings between Atlanta, Nashville, Birmingham, Greensville, Memphis and beyond, the academic

 Continued on Page 6
Developing a Robust Innovation . . . *Continued from Page 5*

resources, healthcare systems, deal flow, unique assets and personal connection, we are more able to know and regularly support each other. Other cities are much more isolated and less prone to collaboration beyond their city limits. As Atlanta demonstrates efficient medical product development and leverages available resources to get the tech into clinics with commercial validation, we will start to attract more investors creating a larger medtech industry ecosystem. The short of it: Atlanta excels at tying people and resources together. The goal: increasing the speed to market for medical device innovators and investors — particularly for pediatric patients.

Be Informed! Get Involved!

Join the

Section on Advances in Therapeutics and Technology

Listserv® Today!

If you are interested in joining the Listserv, email tcoletta@aap.org

We welcome contributions to the newsletter on any topic of interest to the pediatric community.

Please submit your idea or article to:
Chester J. Koh, MD, FACS, FAAP at cxkoh@texaschildrens.org
Noninvasix: Minimizing Cerebral Ischemic Injury in Preterm Infants with Optoacoustics

Graham Randall, PhD
CEO, Noninvasix, Inc.
grandall@noninvasix.com

Editor's note: This section spotlights the development and commercialization of new pediatric medical devices and hopefully serve as a resource and inspiration.

Each year, approximately 340,000 low birth weight (LBW) and very low birth weight (VLBW) preterm neonates are born with substantially increased risk for permanent brain impairment due to a lack of blood flow to the brain after birth. Called hypoxic ischemic encephalopathy, this condition is a precursor to cerebral palsy and is responsible for 23% of all neonatal deaths and costs an average of $28,000 per patient. There is currently no technique for easily, repeatedly and noninvasively monitoring or measuring cerebral circulatory adequacy.

Monitoring neonatal cerebral circulatory function would be of particular value in the first post-natal 48 hours, during which cerebral circulatory function must rapidly adapt to changing systemic hemodynamics. Changes are particularly rapid in the first minutes to hours after birth. However, the risks of long term invasive monitoring outweigh the benefits and the feasibility of continuing to maintain invasive access in a child as they awaken is rather low. In addition, real time monitoring is not a reliable feature of the small catheters utilized in the neonatal and pediatric setting.

Furthermore, all NIR spectroscopic techniques rely on returning or transmitted light; therefore, they have limited ability to separate the signal derived from venous saturation, which reflects tissue oxygen uptake, and arterial saturation, which represents a component of oxygen supply. Although NIRS techniques have provided vital information on neonatal cerebral circulation they have not yet proven useful for routine clinical monitoring.

INNOVATION

For more than ten years, University of Texas Medical Branch (UTMB) researchers Donald S. Prough, MD and Rinat Esenaliev, PhD have studied and tested the feasibility of laser optoacoustic monitoring of cerebral blood oxygenation. To further develop their technology for non-invasively detecting cerebral oxygenation in the neonatal intensive care unit, they co-founded Noninvasix in 2007.

Using patented optoacoustic technology, Noninvasix is developing a monitoring system for at-risk babies to measure the amount of oxygen in the brain in real time. In contrast to other purely spectroscopic techniques, such as near-infrared spectroscopy, this technology provides an absolute, rather than relative measurement, and can be targeted to specific blood vessels, such as the sagittal sinus vein in the brain. Such capabilities allow optoacoustic oximeters to be more broadly applicable than pulse oximetry.

DEVICE DESIGN

Using a sensitive, wide-band head strap to access the superior sagittal sinus through the front and back fontanelles of the baby's still-forming skull, Noninvasix's optoacoustic monitoring system sends short laser pulses of near-infrared light into the brain. Hemoglobin in the blood absorbs the light at different frequencies depending on whether or not it is carrying oxygen. Absorption causes rapid thermal expansion of the hemoglobin resulting in a measureable acoustic wave whose amplitude is proportional to the concentration of hemoglobin. An acoustic transducer then detects these waves, and time resolution of the resulting signal determines the depth from which the signal was derived. The high resolution of this optoacoustic technique has been shown in pre-clinical studies to yield real-time and continuous measurement of blood oxygenation.

Continued on Page 8
The optoacoustic system, based on generation of acoustic waves by pulsed light and detection of these waves by sensitive ultrasound transducers, requires several integrated technologies including: a nanosecond laser to generate optoacoustic waves; a head strap containing both optical fibers for laser light delivery and piezoelectric detectors of optoacoustic waves; and an operator interface running custom LabVIEW software to control and analyze signals in real time. The primary obstacle to engineering a multi-wavelength optoacoustic system is designing a nanosecond laser with outputs at several thousand watts of peak power over a significantly short nanosecond pulse duration while at the same time, controlling the light wavelength to within a few nanometers. The earliest prototype utilized a large optical parametric oscillator (OPO) that required a cooling tower. The third generation prototype, about the size of a desktop computer, is fitted with laser diode arrays that have thermoelectric cooling elements. The current iteration is lightweight and compact for portability, and moreover, provides improved signal measurement performance.

Significant innovation was focused on the development of signal-processing hardware and software to measure the low-level acoustic signal and average it from hundreds of repetitive cycles, extracting the waveform out of the background noise and analyzing the waveform to compute the oxygen concentration. Unlike other high-contrast imaging systems, engineers configured the system to make accurate measurements while disregarding movement artifacts.

Safety features for the system include custom-developed software to control the laser module. Separate circuitry monitors the laser's temperature and light pulse energy by sending commands through a USB interface. To secure sensor connections, lockouts and alerts notify clinicians should the sensor strap require adjustments.

Medical engineers at Houston-based Cooper Consulting Service worked to integrate the laser module with the acoustic signal processing system. A LabView software program running under Microsoft Windows on a single board computer and with a touchscreen display was used to bring these technologies together.

MILESTONES

Demonstrated in *in vitro*, animal, and clinical tests, the Noninvasix optoacoustic prototype measures cerebral oxygenation (SO2) in individual brain blood vessels accurately and precisely (correlation: \(r^2 = 0.99 \); bias = 2.47%; SD = ±2.3%) in comparison to invasive hemoximetry, the gold standard for those measurements.

The third-generation prototype has been safely tested in adult humans, fetuses and neonates at the University of Texas Medical Branch-Galveston (UTMB). Clinical tests show the optoacoustic system provides accurate measurement of oxygen saturation specifically in the superior sagittal sinus. The high (optical) contrast and high (acoustic) resolution of the optoacoustic system permits direct probing of blood vessels.

The company submitted a pre-sub to the FDA in February 2016, with expectations of a decision on the appropriate clinical regulatory pathway in April.

Collaboration with two of Texas’s top accelerator programs have aided Noninvasix in developing strategic partnership and investor connections.

- One of 21 resident companies accepted into the JLabs @ TMC incubator, which opened in March 2016.
- One of 22 startups accepted into the inaugural class of Houston’s TMCx accelerator.
- Noninvasix is a portfolio company of the Southern California Consortium for Technology and Innovation in Pediatrics (CTIP).
- A graduate of Health Wildcatters (Dallas, TX) accelerator 2015 class

Noninvasix’s optoacoustic technology has been showcased in several health innovation competitions.

- Top prize of $100,000 at the inaugural 2015 Texas New Ventures Competition
- Cleveland Clinic Innovations’ 2015 New Ventures Healthcare Challenge finalist
- Third-place, $3,000 cash prize at the HITLAB World Cup held in New York City
- SPIE Startup Challenge semifinalist at 2016 Photonics West conference
- One of ten finalists at SXSW’s Impact Pediatric Health competition 2016
Packed with inspiring keynote lectures, scientific and research plenary sessions, and ample opportunity to network with pediatric surgical colleagues from around the world, the 5th WOFAPS congress will be held on October 8-11, 2016 in Washington, DC, a national center for patient care and medical research.

Whether you are an established pediatric surgeon or a trainee, one thing is true: the industry is changing and evolving, creating an ever-changing landscape. The WOFAPS 2016 will bring together pediatric surgery professionals from around the world to provide key perspectives to advance discussion through the many well designed sessions.
The 2016 iCAN Research & Advocacy Summit will take place June 27 – July 2, 2016 in Barcelona, Spain. This event is being hosted by iCAN and the Sant Joan de Deu Children's Hospital, which supports our local KIDS Barcelona team. We are expecting 150 participants. Youth members will attend with their parents and team leaders, and they will have opportunities to engage with researchers, doctors, regulators, an ethics council, child life services, and much more. The focus of the Summit is on nutrition, healthy lifestyle, and empowering young people to take part in medicine, research, and innovation. More information can be found here: www.icanresearch.org/summit or #iCANSummit2016.

The 2015 iCAN Launch & Research Summit at Barbara Jordan Conference Center in Washington, D.C., June 2015

Since last year’s summit, iCAN has implemented its new structure, including a nine-person board of directors; a Parent, youth, and team leader council; and five committees. All of the committees are made up of youth members, parents, and team leaders. iCAN also launched its Scientific Advisory Board, which is composed of 20+ professionals with years of experience spanning academia, research, clinical medicine, regulation, pharmaceutical and device companies, and more.

iCAN is now composed of 17 member organizations who work at the local level with hospitals, researchers, AAP Chapters, and other partners, and they all share the same objective: to improve pediatric health, medicine, research, and innovation by sharing children's voices in an impactful way. iCAN’s mission is to improve pediatric healthcare by providing a platform for children and their families to provide input and feedback into study designs and treatment plans that are designed for the care of children.

In 2015, iCAN attended four major pediatric research conferences and presented abstracts at two of the conferences. Youth members presented posters, manned booths, created and distributed surveys, spoke on stage, and took part in consultations to give feedback directly.

Continued on Page 11
to researchers. This year, youth members were co-authors on two more abstracts which were accepted for poster presentations at the Eastern Society for Pediatric Research (ESPR) meeting and the Pediatric Academic Societies (PAS) meeting. We were also published in DIA's peer-reviewed journal: Therapeutic Innovation and Regulatory Science.

iCAN Update - International Children's Advisory Network
Continued from Page 10

iCAN members exhibiting and conducting a survey
at the 2015 AAP National Conference and Exhibition in Washington, D.C., October 2015

iCAN members exhibiting at the Pediatrics 2040 conference in Laguna Niguel, CA, January 2016
2015 SOATT Award for Pediatric Innovation

The AAP Section on Advances in Therapeutics & Technology Award for Pediatric Innovation recognizes an individual who has greatly contributed to the field of pediatrics, pediatric therapeutics or pediatric technology through hard work and innovation.

We were delighted to bestow this award to Natan Noviski, MD, FAAP at the 2015 AAP National Conference. Dr. Noviski currently serves as the Chief of Pediatric Critical Care Medicine at Mass General Hospital for Children and has contributed in a very significant way to advances in diagnosis and therapeutics for pediatric disorders through technology and has lead innovative work in telemedicine that has furthered the care of pediatric patients throughout his career.

Congratulations Dr. Noviski!

2016 AAP NCE Update

If you are attending the 2016 AAP National Conference (NCE), the Section on Advances in Therapeutics & Technology has several exciting and interesting programs sponsored by SOATT during the conference:

Sunday, October 23, 2016
2-3:30 PM, repeat at 4-5:30 PM
Gadgets and Gizmo’s for the Pediatric Office Workshops (2)
Andrew Schuman, MD, FAAP

Monday, October 24, 2016
Noon – 12:05 PM Welcome
12:05 – 1:00 PM Top Three Research Paper Presentations (podium) plus Q & A
TOPIC # 1 (tbd)
TOPIC # 2
TOPIC # 3
1:00 – 1:30 PM Section Award Presentation Award for Pediatric Innovation (2016 Recipient: tbd)
1:30 - 2 PM Reception

Parent Joins SOATT Leadership Team as Advisor

Lindsey Elsaesser is a homeschool mom of 3 girls. We travel and share about our middle daughter Evie’s journey with Hypophosphatasia and her experience in a clinical trial.

John and I serve on the Family Advisory Council at Children’s Hospital and Medical Center here in Omaha, NE. I am on the Patient & Community Engagement Subcommittee of the Pediatric Trials Consortium, and am part of the International Children’s Advisory Network (iCAN) Parent’s group of the Kids and Families Impacting Disease through Science Program (KIDS). I also serve as the Parent Advisor to the American Academy of Pediatrics Section on Advances in Therapeutics & Technology Executive Committee. I served as faculty at the 2012 and 2014 AAP National Conference talking about The Importance of Pediatric Clinical Trials from a parent/family perspective.

I also participate on the Patient Advisory Board for SoftBones, Inc., the US Hypophosphatasia Foundation.

I am passionate about pediatric research, rare diseases, foster care, adoption, Bible study, education, exercise, glitter and princesses.
Greetings! I am the new SOATT Membership Committee Chair. I have big shoes to fill, taking over for Seth Toback, MD, MMM. I have been an AAP member since 1989, was the Ohio Chapter president and served on the AAP National Nominating Committee. I have worked in medical affairs for AstraZeneca since 2007. Prior to that, I spent nearly 20 years in academic general pediatrics.

It is an exciting time to be involved in generating new information on pediatric technology, devices and medications. I recently attended a conference on conducting pediatric clinical trials and was impressed with the number of institutions that were represented by pediatricians, nurses, pharmacists and research assistants. There were attendees from industry sponsors and from the federal government. It was the perfect demonstration of the type of multi-disciplinary collaboration we are building through SOATT.

Those of you reading this newsletter are likely SOATT members. We rely on your help to recruit others to the Section. Members of the Section do not need to be eligible for AAP membership. See below for membership categories and eligibility.

Our Section continues to grow and now has 530 members!

Who Can Join?
1. AAP Members

Membership in the section is open to AAP Fellows, Specialty Fellows, Candidate Members, Post Residency Training Members, Honorary Fellows, Emeritus Fellows, and Corresponding Fellows with an interest in advances in therapeutics and technology. There is no fee for AAP members

2. SOATT Affiliate Members

Affiliates are those who are not eligible for membership in the AAP and hold a Masters degree or Doctorate (or equivalent) in pharmacy or other health science concentration. Affiliates must submit an application (see “How to Join” below) and have a signed letter of support from an AAP fellow in good standing. There is a $40 annual fee for section affiliate members.

How To Join?
If you are already a member of the AAP and would like to become a SOATT member, join online by:
1. Going to Member Center of the AAP website and use your AAP login and password.
2. Click on “Join a Section or Council” under Member Community
3. Choose “Advances in Therapeutics and Technology”, answer a few questions, and click “Submit”.

Membership applications can be found at:
Members: http://membership.aap.org/Application/AddSectionChapterCouncil
Affiliates: http://membership.aap.org/Application/SectionAffiliate

If you have any questions about membership, please contact Chris Rizzo MD FAAP at crizzo624@gmail.com or the section staff at jburke@aap.org.
Welcome New Members
(September 2015 to March 2016)

Elia Abdel Massih, MD
Farah Abdulsatar
Olga Acosta, MD, FAAP
Jennifer Aguilar, MD
Alya Z. Ahmad, MD, FAAP
Yousef M. Al-Huwaiji, MD
Justiniano F. Bagtas, MD, FAAP
Carlos Barradas Baptista, MD
Joshuan Barboza Meca, MD
Ihosvani Barroso, MD, FAAP
Sarosh Percy Batlivala, MD, FAAP
Omar L Caban, MD, MBA, MSc, FAAP
Richard Charles Calderone, DO
Cristina Calixto, PhD, MD
Harrietta Kapsalis Christodoulou, DO, FAAP
Yanerys M. Colon-Cortes, MD
Landon Shane Combs, MD, FAAP
Damarys Cuan-Vázquez, MD
Anum Dadwani, MD
Judette Désiré II, MD
Laura E. Diaz de Ortiz, MD
Angela DiBileo, MD
Lisa Ann Dinh, MD
Joshua Michael Dower, MD, FAAP
Dana Danielle Duncan, MD, FAAP
Khalid Ebrahim, MD
Tori Endres, MD
Anne Armstrong Fallon, MD
Rebecca Reid Filbrandt
Matthew Jared Fradkin, MD, FAAP
Leigh Fraser-Roberts, MD, FAAP
Yuneisy Maria Garcia, MD, FAAP
Valentin Garcia, MD
Juhi Gupta, MD, FAAP
Mehvash Hadi, DO, FAAP
Curtis Tony Ray Hampton, MD, FAAP
Jennifer Han
Ahmed Abdelaleem Hassan, MD
Carrie Evans Herbert, MD, FAAP
Zachary H. Ibrahim, MD, FAAP
Jose Iglesias Leboreiro, MD
Pamela Buchi Igweze
Akshat Jain, MD, MPH, FAAP
Patrik Karvan, MD
Rajesh Khanna, MD
Evelyne Nassim Khoriaty, MD, FAAP
Anita Kishen, MD, FAAP
Robert J. Kuhn, PharmD
Pramod Madhukar Kulkarni, MD
Neeraj Kumar, MD
Ranjit Kylathu, MD, FAAP
Samantha Jo Lane, DO, FAAP
Michelle Lin
Jorge Alonso Lopez Carrasco, MD
Elsa Martina Lora, MD
Ahmad K. Mahdi, MD FAAP
Erin Maszczakiewicz, MD
Britta Kareen Mazur, DO, FAAP
Brinda Mehta, MD, FAAP
Pamela Sue Miranda, MD
Anubha Mittal, MD, FAAP
Yoriko Nishizawa
Michael OConnell, MD
Adeteju B. Ogunrinde, MD, MBA, FAAP
Maria Monica Ossa, MD
Sherine Bishara Parker, MD, FAAP
Amy Patel
Vasum Sri Sampath Peiris, MD, FAAP
Yomayra Perez, MD
Maria Victoria Balubar Pertubal, MD, FAAP
Stephanie Ivy Popoñsky
Chandni Pradeep, DNB
Yousef Mohamed Quda Sr., MD
Sydur Rahman
Srujana Rallabandi, MD, FAAP
Hajira Izhar Rana, MD, FAAP
Abid Ali Ranjha, MD
Ruba Sahab, MD
Sanju S. Samuel, MD, FAAP
Ravindra Kumar Sharma, MRCPCH
Suman Shekar, MD
Souzan Siddig, MD, FAAP
Sara Yasmine Siddiqui, MD, FAAP
Praveen Singh, MBBS, FAAP
Jonathan Lee Slaughter, MD, MPH, FAAP
Santhosh Somashekar, MD, FAAP
Kelly Stevens, MD, FAAP
Sachin Dilip Tadphale, MD, FAAP
Suwarna M Tilak, MD, FAAP
Joseph Watson
Rebecca Yamin Weinshilboum, DO, FAAP
Jacqueline Angela Williams-Phillips, MD, FAAP
Mira Yazigi
Sara Zafar, DO, FAAP
Announcements from the AAP

Section Produces Patient Education Brochure on Clinical Trials in Conjunction with the AAP Department of Marketing and Publications

Should My Child Join a Clinical Trial? Patient education brochure was finalized and published in February 2014. The brochure covers:

- Why are clinical trials for children needed?
- How are clinical trials done?
- What are the benefits and risks of a clinical trial?
- What do I need to know before I sign up my child for a clinical trial?
- What questions should I ask about a clinical trial?
- Words to Know
- For more information

For a free sample copy of the brochure, please contact AAP Customer Services at 866/843-2271.

Join the Section on Telehealth (SOTC)

Be on the cutting edge of how technology can increase access to care. Help establish the standards to define quality pediatric telehealth care! Membership in the SOTC will provide you with a connection to a network of over 360 telehealth professionals and help inspire the embracement of telehealth. The Section offers a mentoring program, educational and collaborative opportunities, as well as, tools and resources to help participate in advocacy actions. Join now to be an integral part of the telehealth movement and innovative technology!

How to Join . . .

It's easy! There are NO DUES to join the SOATT.

Send an e-mail to Jackie Burke at jburke@aap.org to request to be added to the Section.
SOATT Leadership Team

Charles Thompson, MD, FAAP
Chairperson, Executive Committee

Susan Cummins, MD, MPH, FAAP
Member, Executive Committee

Lindsey Elsaesser
Parent Advisor

Ozlem Equils, MD, FAAP
Section Contributing Editor to
AAP Grand Rounds Publication

Mitch Goldstein, MD, FAAP
Chair-elect

Karen Kaplan, MD, FAAP
Member, Executive Committee

Chester J. Koh, MD, FACS, FAAP
Newsletter Editor

Robert Leggiadro, MD, FAAP
Member, Executive Committee

Gwen Levy, MD, FAAP
Program Chairperson

Sam Maldonado, MD, FAAP
Government Subcommittee

Eric Ng, MD, FAAP
Communication Subcommittee

Ron Portman, MD, FAAP, FASN
Nominations Committee
Chair, Government Subcommittee

Chuck Schubert, MD, MPH, FAAP
Co-chair, Research Subcommittee

Stephen Spielberg, MD, FAAP
Member, Leadership Team

Chris Rizzo, MD, FAAP
Chair, Membership and Communication Subcommittee

Seth Toback, MD, MMM, FAAP
Member, Executive Committee

Paul Wang, MD, FAAP
Member, Executive Committee
Co-chair, Research Subcommittee

AAP Staff
Jackie Burke • Section Manager
Tracey Coletta • Section Coordinator
Mark A. Krajecki • Prepress Production Specialist

Section on Advances in Therapeutics & Technology
Announces Section Election Results

The Section on Advances in Therapeutics & Technology (SOATT) closed their Section's election on Monday, March 31, 2016. The following members have been elected by SOATT members to the executive committee:

Chairperson Elect
Mitchell Goldstein, MD, FAAP

Executive Committee Member
Mark Puder, MD, PhD, FAAP

Thank you to each person who voted in the election. The new terms will commence November 1, 2016.

If you have any questions about the election or future leadership openings, please e-mail our staff at jburke@aap.org.

Thank you to Ronald Portman, MD, FAAP serving on the Section's nominations committee.