Targeting GSK-3β to Prevent Experimental BPD

Ruben Vaidya, Julia Hummler, Jawahar Jagarapu, Shaoyi Chen, Karen Young and Shu Wu

Division of Neonatology, Department of Pediatrics
University of Miami Miller School of Medicine, Miami, FL
Ruben Vaidya

Has documented that he has no financial relationship to disclose or Conflicts of Interest (COIs) to resolve
Background

• Antenatal inflammation and subsequent exposure to postnatal hyperoxia in preterm infants are crucial factors in the pathogenesis of “New” BPD:
 ➢ Decreased alveolarization
 ➢ Impaired vascular development
 ➢ Increased vascular remodeling (severe BPD)

• Glycogen synthase kinase-3 beta (GSK-3β) is a key regulator of inflammatory response
Background

Infection
Oxidative stress
Mechanical stretch

GSK-3β

TDZD-8

↑ Gene expression of inflammatory mediators

Chemokines
VCAM
ICAM-1

Cytokines
IL-1, 6
TNF-α

Growth factors
TGF-β
GM-CSF

Enzymes
SOD-1,2
MMP-9
Background

• Our previous study showed that inhibition of GSK-3β prevents lung injury induced by severe hyperoxia (90% O₂) in newborn rats.

• Whether GSK-3β inhibition, attenuates lung injury in a model of BPD induced by antenatal inflammation and moderate postnatal hyperoxia is unknown.
Hypothesis

• Inhibition of GSK-3β would prevent lung injury induced by antenatal inflammation and moderate postnatal hyperoxia (70% O₂)
Objective

• To determine the effects of inhibition of GSK-3β in antenatal inflammation and moderate postnatal hyperoxia (70% O₂)-exposed newborn rats on:
 ➢ Lung inflammation
 ➢ Alveolarization
 ➢ Vascular development
 ➢ Vascular remodeling
Study Design

Pregnant rats

- **Normal saline** ip injection
 - Gestation day 19&20
 - Newborn rats
 - Postnatal day 1- RA

- **LPS (0.5mg/kg)** ip injection
 - Gestation day 19&20
 - Newborn rats
 - Postnatal day 1- **70% O₂**

- RA + PL (Control)
- RA + TDZD
- LPS+O₂ + PL
- LPS+O₂ + TDZD

- NS exposed rat pups were placed under RA and LPS exposed rats were placed under hyperoxia (**70% O₂**)

- Rat pups were randomized to receive Placebo (PL) or TDZD (5 mg/kg) by daily ip injection for 14 days
Analyses

• Daily survival and weight gain

• Lung inflammation:
 ➢ Bronchoalveolar lavage (BAL)
 ➢ Expression of inflammatory cytokines
 ➢ Expression of p-NFκB-p65 and NFκB-p65

• Alveolar development: mean linear intercept (MLI)

• Vascular development: vascular density

• Vascular remodeling: muscularization of peripheral vessels

• Data expressed as mean ± SD and analyzed by ANOVA
Inhibition of GSK-3β Improves Weight Gain

*** p<0.001 vs RA+PL
p<0.001 vs LPS+O2+PL
n= 9-13/group
GSK-3β Inhibition Decreases Inflammatory Cell Counts in BAL

*** p<0.001 vs RA+PL
p<0.05 vs LPS+O2+PL
n= 4-6/group
GSK-3β Inhibition Decreases Inflammatory Cell Counts in BAL

Macrophage Count (x10^3)

- Placebo
- TDZD

Neutrophil Count (x10^3)

- Placebo
- TDZD

*** p<0.001 vs RA+PL
p<0.05 vs LPS+O2+PL
n= 4-6/ group

*** p<0.001 vs RA+PL
p<0.005 vs LPS+O2+P
n= 4-6/ group
Inhibition of GSK-3β Decreases Expression of Inflammatory Cytokines

IL-6 Gene Expression

- RA
- LPS+O₂

* p<0.05 vs RA+PL
p<0.05 vs LPS+O₂+PL
n= 5-6/group

TNF-α Gene Expression

- RA
- LPS+O₂

*** p<0.001 vs RA+PL
p<0.001 vs LPS+O₂+PL
n= 5-6/group
Inhibition of GSK-3β Decreases NFκB-p65 Phosphorylation

Western Blot for p-NFκB-p65 and NFκB-p65

Expression of p-NFκB-p65

*** p<0.001 vs RA+PL
p<0.001 vs LPS+O2+PL
n= 4 / group
GSK-3β Inhibition Improves Alveolar Development

Mean Linear Intercept

RA + Placebo RA + TDZD
LPS+O2 + Placebo LPS+O2 +TDZD

* p<0.05 vs RA+PL
p<0.05 vs LPS+O2+PL
n= 5-6/ group
GSK-3β Inhibition Increases Vascular Density

RA + Placebo RA + TDZD

vWF vWF

RA
LPS+O2

LPS+O2 +Placebo LPS+O2 +TDZD

Vascular Density (/HPF)

*** p<0.001 vs RA+PL
p<0.01 vs LPS+O2+
n=5/group
GSK-3β Inhibition Decreases Pulmonary Vascular Muscularization

RA + Placebo RA + TDZD
LPS+O2 + Placebo LPS+O2 +TDZD

Muscularized Vessels (%)

*** p<0.001 vs RA+PL
p<0.001 vs LPS+O2+PL
n= 5/ group
GSK-3β Inhibition Decreases Fibronectin Gene Expression

** p<0.01 vs RA+PL
p<0.01 vs LPS+O2+PL
n= 5/ group
Summary/Speculation

• Treatment with TDZD, a pharmacological inhibitor of GSK-3β in neonatal rats exposed to antenatal LPS and postnatal moderate hyperoxia (70% O₂):
 ➢ Reduced lung inflammation
 ➢ Attenuated alveolar damage
 ➢ Increased vascular development
 ➢ Decreased pulmonary vascular remodeling

• GSK-3β inhibition did not alter normal neonatal lung development

• Inhibition of GSK-3β may provide a novel strategy to prevent BPD in preterm infants
Thank you...
Questions ??
Questions

• What is your future steps or directions?
• Why Some worsening in NS+ TDZD Group?
Stages of Lung Development in Rat and Humans

- **Embryonic**
 - Day 13-14
 - Week 3.5-6

- **Pseudo-glandular**
 - Day 15-18
 - Week 6-17

- **Canalicular**
 - Day 18-20
 - Week 15-34

- **Saccular**
 - Day 19-birth
 - Week 24-36

- **Nasal**
 - Day 4-14
 - Week 36-2 years

- **Alveolar**
 - Day 14-28
 - 2-8 years

- **Proliferation**
- **Expansion**
GSK-3 Pathway

Conditions activating GSK-3β

Upregulation of proinflammatory pathways

Downregulation of antiinflammatory pathways

β-catenin

Proteosomal degradation

Reduced inhibition of NFκB-pathway

Increased proinflammatory responses

MLK3

STAT3/5

JNK-pathway

p65

CBP

CREB

CBP

p50

p65

p50

p65

IL-6

TNF-α

MCP-1

IL-10
TDZD

- Serine/threonine protein kinase glycogen synthase kinase 3 (GSK-3)
- TDZD-8 is a selective inhibitor of GSK-3
- Thiadiazolidinone derivative, non-ATP competitive inhibitor of GSK-3
- TDZD-8 has been proposed to bind to the kinase site of GSK-3β
- First described as a component of the metabolic pathway for glycogen
Role of GSK-3B Inhibition in Human

- Alzheimer’s:
 - A phase II trial of Tidegusib, a GSK-3 inhibitor was recently completed to evaluate its effect on Alzheimers “A Phase II Trial of Tidegusib (GSK-3 Inhibitor) in Alzheimer's Disease”

- Cancer
 - “Maintaining Glycogen Synthase Kinase-3 Activity Is Critical for mTOR Kinase Inhibitors to Inhibit Cancer Cell Growth”
 - Potential in cancer treatment in various organs “Glycogen Synthase Kinase-3 (GSK3) Inhibition Induces Prosurvival Autophagic Signals in Human Pancreatic Cancer Cells”

- Pulmonary hypertension:

- Improve Hepatic Injury
 - “GSK-38 Inhibition Attenuates CLP-Induced Liver Injury by Reducing Inflammation and Hepatic Cell Apoptosis”

- Improves cardiac injury and remodeling
 - “Cardiomyocyte-specific deletion of Gsk3α mitigates post-myocardial infarction remodeling, contractile dysfunction, and heart failure”