Molecular Regulation of Cytochrome P4501A1 Induction by Hyperoxia in Human Pulmonary Cells

Sudeepta K. Basu, MD
Neonatology Fellow, Baylor College of Medicine
Attending, Children’s National Health System

October 24th 2015
AAP, Washington, DC
• I have **no** relevant financial relationships with the manufacturer(s) of any commercial product(s) and/or provider(s) of commercial services discussed in this CME activity.

• I **do not** intend to discuss an unapproved/investigative use of a commercial product/device in my presentation.
Bronchopulmonary Dysplasia

Oxygen therapy

Reactive oxygen species

Hyperoxic lung injury

CYP1A1

Infection
Chorioamnionitis

Impaired alveogenesis
Deranged repair and fibrosis

Injury & Inflammation

Bronchopulmonary dysplasia (BPD)

Mechanical ventilation

Barotrauma
Volutrauma
CYP1A1 reduces hyperoxic injury

Methylchloanthrene (MC)

CYP1A1

95% Oxygen

Arylhydrocarbon Receptor pathway (AHR)

CYP1A1

ANF, AHR ko

CYP1A1

Hyperoxic injury

Mansour 1988, Moorthy 2000
CYP1A1 regulation: Arylhydrocarbon Receptor (AHR) pathway

- **Ah/O₂**
- **ROS-?**
- **AhR**
- **HSP90**
- **Inducible Pr (CYP1A1)**

CYTOPLASM

- **mRNA**
- **ARNT**

NUCLEUS

- **Ah/O₂**
- **AhR**
FICZ: (6-formylindolo[3,2-b]carbazole)

- Tryptophan derivative - UVR
- Suggested physiologic AhR ligand
- High affinity K_d 0.07nM
- Feedback loop

AhR responsive element (AhRE) sequence ($5'-T/GCGTG-3'$)

Induction of AhR responsive gene products

+1 at 3' end of exon
Hypothesis:
Hyperoxia Responsive Element (HRE) in CYP1A1 promoter

Induction of CYP1A1 gene

AhRE consensus sequence (5’-T/GCGTG-3’)
Mutated sequence (5’- A/CGGTG-3’)

+1 at 3’ end of exon
pGL4 luciferase reporter plasmid

- Mutated CYP1A1 promoter (WT, 974, ...)
- Firefly luciferase gene
- pGL4 vector sequence
- Firefly luciferase
- Hyperoxia, MC, FICZ

pGL4 Renilla luciferase - null promoter - used as control
H441 cell transfection & Dual luciferase assay

H441 lung adenocarcinoma cell
(96 well microplate x 3 wells)

pGL4 Firefly luciferase
(CYP1A1 WT, Δ974, Δ1047, Δ45)

pGL4 Renilla luciferase
(null internal control)

MC, FICZ, Hyperoxia,

Firefly/Renilla luciferase ratio

CYP1A1 promoter activity

Dual luciferase assay
Mutated Δ974 blocks CYP1A1 induction by MC

Fold of increase 7.7 vs 2.8, p < 0.01
FICZ induces CYP1A1 promoter in pGL4-WT
pGL-Δ974 mutation blocks induction by FICZ

(13.1 vs 6.7, p<0.01)
Mutated Δ974 blocks CYP1A1 induction by Hyperoxia

Luciferase activity

H441 cells with wild type or mutated CYP1A1 promoter vector

- pGL4-WT
- pGL4-Δ974
- pGL4-Δ1373

0.19 vs 0.22, p = 0.25

0.33 vs 0.5, p = 0.03
Electrophoretic Mobility shift assay

Mutation of -974 diminished the AHRE/AhR band in EMSA

Wildtype promoter

Mutated -974 promoter

Shifted AhRE/AhR band

Cold probe

DMSO

MC2h

MC6h

MC8h
Chromatin Immunoprecipitation assay

\[\Delta 974 \text{ mutated CYP1A1} \]

Control RA O2 MC

Wild Type CYP1A1

inverted colors
Conclusions

- Mutated (-Δ974) blocks CYP1A1 induction by MC(AhR pathway) and hyperoxia
- Hyperoxia induces CYP1A1 by AhR pathway
- FICZ induces CYP1A1 by AhR pathway
- AhRE(-Δ974) is a likely site for the proposed HRE segment in the CYP1A1 promoter
Acknowledgements:

- Dr Moorthy’s Lab:
 Chun Chu
 Jiang Weiwu
 Xanthi I. Couroucli
 Bhagavatula Moorthy

- “Evie” Whitlock grant

- AAP Marshall Klaus award
Future directions and implications

• Novel pharmacological agents influencing Δ974 site need to be investigated for effect on hyperoxic cell/lung injury

• Investigating Nuclear factor 1 binding site for regulatory role in delayed CYP1A1 suppression
References:

References:

Chromatin Immunoprecipitation assay

\[\Delta 974 \text{ mutated CYP1A1} \]

O2 MC

Control RA O2 MC

Wild Type CYP1A1
Transcription Regulation Elements in CYP1A1 Promoter

- Consensus sequence (5'-T/GCGTG-3')
- Mutated sequence (5'- A/CGGTG-3')
Schematic depiction of pGL4 constructs

WT CYP1A1 promoter Firefly luciferase SV40 poly(A)

SV40 minimal promoter Renilla luciferase SV40 poly(A)

\textit{Vs.}

Mutated CYP1A1 promoter Firefly luciferase SV40 poly(A)

SV40 minimal promoter Renilla luciferase SV40 poly(A)
Hyperoxia induces endogenous CYP1A1 f/b suppression on sustained hyperoxia

CYP1A1 EROD assay fold of increase O2/RA 0-72 hrs
Possible sites of AhR repression of inflammation mediated transcription

1. cytoplasmic sequestration
2. nuclear sequestration
3. transrepression
4. block synergistic TF interaction or sequester co-factor
Hypothesis:

Hyperoxia Responsive Element (HRE) in promoter region CYP1A1

Induction of CYP1A1 gene

AhRE core consensus sequence (5'-T/GCGTG-3')
NF1 mutation maintains cyp1a1 response to 24-36 hr hyperoxia

![Bar chart showing luciferase activity for different conditions and time points.](chart.png)
NF1 mutation blocks late suppression of cyp1a1 on sustained hyperoxia
Conclusions B

NF1 response element mutation
- suppresses constitutive CYP1A1 expression
- does not interfere AHR pathway
- does not alter CYP1A1 induction in early hyperoxia (24-36hrs)
- Blocks CYP1A1 suppression by late hyperoxia (48-60hrs)