Model Strategies:
Strategic Communications and Systematic Messaging

David Schonfeld, MD, Facilitator
Joseph Bocchini, MD, Presenter
Bill Cosgrove, MD, Presenter, Utah
Susan Penfield, MD, Presenter, Texas
Robert Schechter, MD, Presenter, California
Public Health Communication with Frontline Clinicians During the First Wave of the 2009 Influenza Pandemic

Catherine J. Staes, BSN, MPH, PhD; Amyanne Wuthrich, MS; Per Gesteland, MD, MS; Mandy A. Allison, MD, MSPH; Molly Leecaster, PhD; Julie H. Shakib, DO, MPH; Marjorie E. Carter, MSPH; Brittany M. Mallin, MA, MPH; Susan Mottice, PhD; Robert Rolfs, MD, MPH; Andrew T. Pavia, MD; Brent Wallace, MD; Adi V. Gundlapalli, MD, PhD, MS; Matthew Samore, MD; Carrie L. Byington, MD

Context: During public health emergencies, office-based frontline clinicians are critical partners in the detection, treatment, and control of disease. Communication between public health authorities and frontline clinicians is critical, yet public health agencies, medical societies, and healthcare delivery organizations have all called for improvements.

Objectives: Describe communication processes between public health and frontline clinicians during the first wave of the 2009 novel influenza A (H1N1) pandemic; assess clinicians’ use of and knowledge about public health guidance; and assess clinicians’ perceptions and preferences about communication during a public health emergency. Design and Methods: During the first wave of the pandemic, we performed a process analysis and surveyed 509 office-based primary care providers in Utah. Setting and Participants: Public health and healthcare leaders from major agencies involved in emergency response in Utah and office-based primary care providers located throughout Utah. Main Outcome Measure(s): Communication process and information flow, distribution of e-mails, proportion of clinicians who accessed key Web sites at least weekly, clinicians’ knowledge about recent guidance and perception about e-mail load, primary information sources, and qualitative findings from clinician feedback. Results: The process analysis revealed redundant activities and messaging. The 141 survey respondents (28%) received information from a variety of sources: 68% received information from state public health; almost 100% received information from health care organizations. Only one-third visited a state public health or institutional Web site frequently enough (at least weekly) to obtain updated guidance. Clinicians were knowledgeable about guidance that did not change during the first wave; however, correct knowledge was lower after guidance changed. Clinicians felt overwhelmed by e-mail volume, preferred a single institutional e-mail for clinical guidance, and suggested that new information be concise and clearly identified. Conclusion: Communication between public health, health care organizations and clinicians was redundant and overwhelming and can be enhanced considering clinician preferences and institutional communication channels.

KEY WORDS: disease outbreaks, influenza, interdisciplinary communication, public health practice

During public health emergencies, frontline clinicians are critical partners in the detection, treatment, and control of disease.1,2 Public health authorities rely

Author Affiliations: Department of Biomedical Informatics (Dr Staes), Division of Epidemiology (Mss Wuthrich, Carter, and Mallin and Drs Leecaster, Gundlapalli, and Samore), Department of Pediatrics (Drs Gesteland, Allison, Shakib, Pavia, and Byington), University of Utah School of Medicine, Salt Lake City, Utah Department of Health, University of Utah (Drs Mottice and Rolfs), Intermountain Healthcare (Drs Gesteland and Wallace), VA Medical Center (Drs Leecaster and Samore), Salt Lake City, Utah.

We thank our collaborators with the Utah Health Research Network, Intermountain Healthcare, University Healthcare, and HealthInsight for their assistance with the survey. This work was partially supported by the CDC Center of Excellence in Public Health Informatics grant #8P01HK000030 (CS, AW, PG, MA, ML, JS, MC, BM, SM, RR, MS, CB), NH/Enic Kennedy Shriver NICHD K24-HD047249 (CLB), PHS National Center for Research Resources (grant UL1-RR025764) (PG), Agency for Healthcare Research and Quality grant K08 HS018538-01 (PG) and NIH/NIAD Rocky Mountain Regional Center of Excellence for Biodata and Emerging Infectious Diseases Research grant U 54 AI-065357 (AVG).

Correspondence: Catherine J. Staes, BSN, MPH, PhD, Department of Biomedical Informatics, University of Utah, 26 South 2000 East (HSEB 5700), Salt Lake City, UT 84112 (Catherine.Staes@hsc.utah.edu).
on clinicians to make appropriate decisions about whom to test, how to collect specimens, what treatments to use, and to implement or support public health reporting when it is required by the state law for disease surveillance. Similarly, clinicians refer to public health for guidance to control the spread of the disease and the latest intelligence concerning the pathogen. Communication between public health authorities and clinicians is particularly critical when the pathogen has the potential for rapid spread, there is widespread public concern, and the epidemiology and optimal management are unclear, particularly concerning those at risk for severe disease. These factors were present in April, May, and June 2009 during the first wave of the 2009 novel influenza A (H1N1) pandemic in the United States.

2. Physicians is particularly critical when the pathogen has the potential for rapid spread, there is widespread public concern, and the epidemiology and optimal management are unclear, particularly concerning those at risk for severe disease. These factors were present in April, May, and June 2009 during the first wave of the 2009 novel influenza A (H1N1) pandemic in the United States.6

Background

Communication between public health authorities and frontline clinicians is a critical component of any public health emergency response plan. For the past 10 years, public health agencies, medical societies, and health care delivery organizations have all called for improvements.1-5, 1011 Even so, we found only 3 limited evaluations of communication during the recent pandemic in the medical literature,5,12,13 and no literature that objectively assessed communication between public health authorities and frontline clinicians during a public health emergency.

Communication between public health authorities and clinicians is complex. Multiple barriers must be overcome to support an appropriate emergency public health response. In particular, clinicians must be able to identify the authoritative and appropriate source for clinical guidance among the variety of messages available from federal, state, and local public health authorities, professional organizations, and their own institutions.14-17 The variety of messages may lead to mixed messages and overload; moreover, their impact is unknown.

In April and May 2009, as H1N1 outbreak began in the United States, challenges with producing and delivering guidance became evident in Utah and elsewhere.5, 18-20 There was a rapid increase in new information targeting clinicians, particularly concerning personal protective equipment, high-risk patient groups, diagnostic testing, antiviral therapies, and immunization. We hypothesized that clinicians would face challenges in keeping up with evolving and tailored messages from multiple organizations at a time when clinic volumes, patient concerns, and media exposure were increasing. We targeted our investigation toward office-based primary care providers for 2 major reasons: first, information flow may differ in the hospital setting; and second, office-based care is the most frequent usual source of care for individuals in the United States.21 In fact, according to the 2008 Utah Healthcare Access Survey, of 88.33% of Utahns who report that they have a usual place that they go when they are sick or need advice about their health, 79.5% report that they go to a private clinic or doctor’s office.22

The objectives of our investigation were to (1) describe the communication processes between the CDC, state/local public health agencies, health care organizations and institutions, and office-based primary care clinicians during the first wave of the H1N1 pandemic; (2) assess clinicians’ knowledge about public health guidance concerning the detection, treatment, prevention, and control of H1N1 virus; and (3) determine clinician preferences and perceptions about communication during a public health emergency to improve the process.

Methods

Process analysis

To describe the process for communicating guidance to frontline clinicians in Utah, we interviewed key informants and diagrammed process and information flow by using business process modeling techniques.23 The key informants represent clinical and epidemiologic leaders from the state and largest county health departments and the 2 major health care organizations in Utah with a combined majority of the market share in the state. Between May and July 2009, we gathered information from the most senior epidemiologist at the Utah Department of Health (UDOH) and the Salt Lake Valley Health Department, and from clinicians and administrators at the 2 major health care organizations in Utah: Intermountain Healthcare (Intermountain) and University of Utah Healthcare (University). Several study authors (P.G., S.M., R.R., A.T.P., B.W., I.R., A.V.G., and C.L.B) were key participants in surveillance and guidance development activities. Findings were validated by the above key participants and senior leadership at Intermountain and University. We reviewed the guidance e-mailed from Intermountain to clinicians and information posted on the CDC, UDOH, and Salt Lake Valley Health Department Web sites between May 1 and May 11.

Survey

Study population

The study population included office-based primary care clinicians located in urban and rural communities throughout Utah. We used 3 major Utah-based
organizations to reach the study population. We surveyed clinicians affiliated with University, including 98 clinicians with the community clinics and 17 pediatricians affiliated with the Department of General Pediatrics. We surveyed 315 primary care clinicians employed by or affiliated with Intermountain, an integrated health care system that operates more than 100 ambulatory care clinics throughout Utah. These clinicians were identified by the Intermountain Healthcare Office of Physician Relations. Finally, we surveyed 79 office-based primary care clinicians from small group practices in rural Utah not affiliated with Intermountain or University. These clinicians were identified by HealthInsight, a not-for-profit community-based organization that routinely works with independent office-based primary care providers throughout Utah. HealthInsight is the Agency for Healthcare Research and Quality–designated Chartered Value Exchange, the Health Information Technology Regional Extension Center, and the Medicare Quality Improvement Organization in Nevada and Utah.

Survey design and procedure

We performed a descriptive, cross-sectional survey that included questions to assess clinicians’ use of and access to public health guidance concerning the detection, treatment, prevention, and control of H1N1 virus; knowledge about public health reporting and guidelines; and preferences and perceptions about different sources of information. An e-mail with a link to an anonymous Web-based survey was sent to study participants. Two (Intermountain) or 3 (all others) sequential e-mails were sent at least 1 week apart. Individual clinicians could respond to the survey only once. Surveys were completed between May 26 and June 30, 2009, during the first wave in Utah (Figure 1). Institutional review board approval was obtained from Intermountain and the University of Utah.

Survey data analysis

We used descriptive statistics to describe the frequency and sources of information pushed to the clinicians in Utah, the frequency and sources of Web-based information they accessed, and clinician knowledge about public health guidance that would affect a clinician’s clinical decision making. We specifically queried about 4 potential e-mail sources from the CDC, UDOH, Intermountain, and University. We used the Fisher exact test to compare responses between clinicians employed by Intermountain, University, or neither organization (other).

To assess clinician preferences and perceptions about communication, we used 3 strategies. We queried about their primary source of information for clinical decision-making and classified sources as institutional, local/state public health, national, or other. We assessed the relationship between the number of e-mail sources and the clinician’s perception about the amount of e-mail received. We used the Fisher exact test to compare the observed and expected percentages, assuming that perceptions of e-mail amount were independent of the numbers of e-mail sources. Finally, we performed a qualitative analysis of the responses to an open-ended question. The free text comments were coded using an adaptation to the Grounded Theory Approach18 and then grouped into themes.

● Results

Analysis of communication processes as the pandemic unfolded

On April 24, 2009 (Figure 1), the CDC reported that an H1N1 virus was responsible for a large outbreak of respiratory illness in Mexico and was associated with widespread human-to-human transmission. The key informant interviews, process analysis, and communication artifacts (Web sites, e-mails, and alerts) illustrated the activated public health response to the threat of pandemic influenza. During the ensuing weeks, communication efforts increased both nationally and locally to serve the information needs of clinicians and to enhance the compilation of surveillance data.

On the national level, the CDC used several established communication systems to target clinicians, including Clinician Outreach and Communication Activity (COCA) e-mails, Health Advisory Network alerts, and Morbidity and Mortality Weekly Report (MMWR) dispatches and publications (Figure 2). The COCA alerts target clinicians. Health Advisory Network alerts
and MMWR targets both clinicians and public health stakeholders. The CDC also created an H1N1 Web site to post information for clinicians, public health partners, and the community. During the first 2 weeks of the emergency, new content was posted daily.

In Utah, UDOH used a statewide faxing system and an existing electronic mailing list, routinely used to deliver weekly Infectious Disease Updates to clinicians, to deliver “daily H1N1 situation reports” to frontline clinicians (Figure 2). UDOH created an H1N1 Web site to provide updated information for clinicians and the public. During the first 2 weeks of the outbreak, new content was posted or faxed daily, except Sunday. The predominant health care organizations in Utah (Intermountain and University) used their existing electronic mailing lists and institutional Web sites to communicate with employed and affiliated clinicians. Multiple authorities and specialists sent e-mails within each organization (Figure 2). Some organizations have multiple institutions offering their own specialized guidance (eg, the Children’s Hospital).

Communication generation and content analysis

Multiple organizations were performing surveillance, gathering epidemiologic information, creating guidance (eg, treatment, testing, personal protective measures) and situational reports, and disseminating information directly to frontline clinicians (Figure 2). In Utah, guidance was developed or modified to address problems, constraints, and goals within the state or health care organization or individual institutions. Public health epidemiologists and infectious disease experts were spending several hours each day manually reviewing information from multiple sources to update and create new guidance. The key informants noted
that information in guidance documents was usually designed to meet institutional needs and resources rather than to provide a comprehensive set of all the information required by frontline clinicians. For example, early CDC guidance described which patients should be tested and then included the caveat that “Clinicians should be aware of local guidance on testing.”

Simultaneously, health care institutions tailored messages based on the availability of their resources (eg, personal protective equipment, antiviral medications, vaccine) and included links to public health Web sites but did not explicitly describe differences.

At 2 weeks into the outbreak, the CDC and UDOH started specifying the “date of last update” for content linked to their Web sites, but they did not identify the updated content within the multipage documents. Therefore, the reader would have had to read the entire document and determine new content on his or her own. In addition, we identified inconsistencies: one guidance document posted 2 weeks into the emergency included 4 different names for the virus: “novel Influenza A H1N1,” “2009 H1N1 Influenza A,” “S-OIV infection,” and “novel H1N1 flu (swine flu).” This reflected the national and international confusion regarding the nomenclature for this virus.

Description of survey respondents

Of the 509 clinicians surveyed, 141 (28%) responded and were included in this analysis; 7 were excluded because they did not practice office-based primary care, and 368 did not complete the survey. The respondents were experienced clinicians, mostly physicians (95%), with a median of 15 years of professional experience. Half (46%) of the respondents reported that at least one-fourth of their patients were younger than 18 years. The respondents worked in outpatient primary care settings located in 7 of the 8 multicounty Utah health districts, comprising rural and urban communities throughout Utah. The clinicians were employed by Intermountain (n = 53), University (n = 32), both Intermountain and University (n = 1), and neither of these organizations (other) (n = 55). The 3 groups of clinicians had similar years of experience and pediatric practice, although University clinicians were less likely to work full-time seeing patients (P < .01).

Description of communication received and sought by clinicians

During the first month of the outbreak (Figure 1), a majority (68%) of frontline clinicians received information pushed from UDOH, by either fax (38%) or e-mail (56%); 21% received the information e-mailed by the CDC COCA system. Receipt of e-mail messages from UDOH or CDC was not related to a clinician’s employer. In contrast, UDOH faxes were less likely to be received by Intermountain (34%) or University (12%) clinicians than other (58%) clinicians (P < .0001). Nearly 100% of the respondents employed by Intermountain or University received the e-mails from their chief medical officer. The e-mails from Intermountain also reached 68% of the clinicians in small-group, rural practices unaffiliated with Intermountain, although they might have admitting privileges at Intermountain facilities.

Respondents’ use of Web sites during the first month of the outbreak varied. Approximately half (53%) reported visiting the CDC H1N1 flu Web site at least once each week. In contrast, only one-third visited the UDOH (35%) or their institutional (38%) Web site at least once each week. Half the respondents never sought information from the UDOH Web site (50%) or their own institution Web site (46%); 17% never visited the CDC Web site. Two-thirds (67%) of the clinicians did not read MMWR during the first month. The use of Web sites did not significantly differ by clinician affiliation (P > .09).

Clinician knowledge about public health guidance

The respondents had a high level of correct knowledge for questions about high-risk groups, testing, and treatment (Table 1). These guidelines remained fairly constant during the 1-month survey period. However, when guidance changed during the survey period (eg, reporting requirements), the subsequent survey respondents had lower levels of correct knowledge (Table 1). There was no significant difference by clinician affiliation (P > .05).

Clinician preferences and perceptions about communication

Primary sources of information for clinical decision making

Concerning who and how to test for the emerging influenza virus, most (73%) Intermountain and University clinicians used their own institution as their primary source of information; in contrast, the other clinicians used institutional (38%), state (33%), and national (24%) sources as their primary source (P = 0.001). Table 2 demonstrates primary sources of information for all respondents. Concerning treatment guidance, institutional sources were the preferred source (55%), regardless of employer; CDC (28%) and local/state public health (13%) sources were less frequently preferred. For patient educational materials, the CDC Web site (40%) and institutional sources (32%) were the preferred sources, regardless of employer. For population-based data about the epidemiology of influenza, the
TABLE 1 ● Knowledge Among Primary Care Providers Concerning Public Health Guidance Delivered During the First Wave of the Novel Influenza A (H1N1) Outbreak (n = 141)

<table>
<thead>
<tr>
<th>Knowledge</th>
<th>False</th>
<th>True</th>
<th>Do not Know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pregnant women are considered high-risk for serious illness if they acquire swine flu</td>
<td>5%</td>
<td>88%</td>
<td>7%</td>
</tr>
<tr>
<td>Rapid point-of-care tests for influenza A can distinguish between seasonal influenza A and the swine flu influenza</td>
<td>99%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>The recent outbreak strain of swine flu is susceptible to oseltamivir (Tamiflu)</td>
<td>3%</td>
<td>96%</td>
<td>1%</td>
</tr>
<tr>
<td>The only reliable test to confirm or rule out swine flu is the PCR test at the Utah Public Health Laboratory or the Centers for Disease Control and Prevention</td>
<td>16%</td>
<td>79%</td>
<td>4%</td>
</tr>
<tr>
<td>Children younger than 5 years are considered high-risk for serious illness if they acquire swine flu</td>
<td>9%</td>
<td>86%</td>
<td>5%</td>
</tr>
<tr>
<td>The current recommendations for patients with probable or confirmed swine flu is to exclude them from school or work for 7 days after their first day of symptoms or for 24 hours after their symptoms resolve whichever is longer</td>
<td>4%</td>
<td>90%</td>
<td>6%</td>
</tr>
<tr>
<td>Question with answer that changed during the survey period</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Only hospitalized cases of swine flu influenza are reportable to public health Prior to June 8th (n = 63)</td>
<td>90%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>After June 8th (n = 54)</td>
<td>48%</td>
<td>46%</td>
<td>6%</td>
</tr>
</tbody>
</table>

aCorrect answer.

TABLE 2 ● Primary Sources of Information Used by Primary Care Providers During the First Wave of the Novel Influenza A (H1N1) Outbreak (n = 141)

<table>
<thead>
<tr>
<th>Primary source of information</th>
<th>Local/State</th>
<th>Institutional</th>
<th>Public Health</th>
<th>CDC</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>about who and how to test</td>
<td>60</td>
<td>22</td>
<td>13</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>about treatment</td>
<td>55</td>
<td>13</td>
<td>28</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Educational materials to share with patients</td>
<td>32</td>
<td>16</td>
<td>40</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: CDC, Centers for Disease Control and Prevention.

Qualitative analysis of clinician feedback

Almost half of the respondents (42%) answered the question, “Please provide comments about good and bad aspects of the communication you received about the swine flu.” The comments were classified into 7 categories. The 6 most frequent categories included negative feedback in the following descending order of frequency: “amount of e-mail communication,” “Quality of information contained in the e-mail,” “Usefulness of information,” “source of e-mail communication,” “timeliness of e-mail delivery,” and “length of e-mail.” The seventh and least frequent category was “general positive feedback.”

The clinician’s comments could be grouped into 4 themes (Table 3). The first theme addressed concerns about being overwhelmed by e-mail. The clinicians describe emotional responses while trying to use information in the e-mails. There were dramatic statements including one that described the scene in their office as a “comic opera” and another that observed, “It seemed most of the information was driven by hysteria.” The respondents perceived the amount of e-mail they received as “way too much.” The second theme addressed concerns about receiving appropriate information to act. The clinicians commented about usefulness, quality, timeliness, and accuracy of the information and the impact on their ability to appropriately treat patients. The comments described the information as “confusing at times regarding proper testing” and “seemed to change daily.” The third theme addressed concerns about the trustworthiness of the e-mails’ source. The clinicians commented that “medical office e-mails duplicated health department ones, reading both to find discrepancies was too time consuming,” and “if (health care institution) recommendations are
TABLE 3
Themes That Emerged in Comments From Clinicians in Response to an Open-Ended Question Requesting Feedback

<table>
<thead>
<tr>
<th>Theme 1</th>
<th>Overwhelmed by e-mail communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Describes the emotional response to the communication</td>
</tr>
<tr>
<td>Sample feedback</td>
<td>“The communication was too confusing and voluminous to be helpful.”</td>
</tr>
<tr>
<td></td>
<td>“Daily memos are information overload. Eventually I stopped reading them.”</td>
</tr>
<tr>
<td></td>
<td>“I received 10–20 e-mails/day, all with virtually identical info; the problem was, I didn’t know which ones were new/different.”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theme 2</th>
<th>Appropriate information to act</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Describes the difficulties of using the information relayed through e-mails to determine how to best treat patients.</td>
</tr>
<tr>
<td>Sample feedback</td>
<td>“Recommendations on contact and respiratory isolation/protection procedures were not particularly helpful.”</td>
</tr>
<tr>
<td></td>
<td>“Extremely confusing.”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theme 3</th>
<th>Trusting the source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Describes the difficulties of sifting through information from several different agencies</td>
</tr>
<tr>
<td>Sample feedback</td>
<td>“There were inconsistencies between what the CDC, State of Utah and our healthcare system were advocating in terms of testing and treatment—mainly due to differences in available resources and lack of coordination locally.”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theme 4</th>
<th>Improve communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Describes suggestions to improve e-mail and other communication strategies</td>
</tr>
<tr>
<td>Sample feedback</td>
<td>“… if you need to update please highlight changes so we know what we really need to read of new version.”</td>
</tr>
<tr>
<td></td>
<td>“A single web site with consistent and updated info would work better.”</td>
</tr>
<tr>
<td></td>
<td>“It would have been very useful to have email with a bulleted list of changes and [a] summary of [the] current state of the epidemic/treatment/testing…”</td>
</tr>
</tbody>
</table>

different than the CDC’s, then this difference should be explicitly noted and explained.” The fourth and final theme concerned clinicians’ suggestions to improve communication during future public health emergencies. They suggested that communication be more concise and clearly highlight information tailored to the local environment that is new or different from public health recommendations.

Communication process after survey

During the summer of 2009, in preparation for wave 2, a new organizational strategy for communication was established in Utah. Leaders from UDOH, Intermountain, University, and other smaller health care organizations operating in Utah created a taskforce to coordinate public health messaging and create unified messages. Chief medical officers were assigned the responsibility for distributing a unified message within their organization. In addition, UDOH changed the e-mail message format to prominently display new and updated information using bullets at the top of each e-mail.

Discussion

To the best of our knowledge, this study is the first to present an objective analysis of communication between public health agencies, health care organizations, and frontline clinicians during a public health emergency. Frontline clinicians were receiving and seeking clinical guidance from multiple sources. The creation and distribution of content from national and local sources was often redundant. The volume of e-mail related to H1N1 was too great for most clinicians to process efficiently. Health care organizations and institutions played a key role in distributing public health guidance to clinicians and were the preferred source for treatment and testing guidance for clinicians employed by a health care system. Clinicians identified Web sites as an important source of information, yet only one-third visited Web sites frequently enough to access up-to-date information tailored for Utah clinicians. Respondents had a high level of knowledge about the testing and treatment of H1N1 when guidance was stable; however, correct knowledge was lower after guidance changed, as in the case of reporting requirements. Frontline clinicians offered important practical suggestions for improving communication.

The process analysis validated our hypothesis that the current communication process is multidirectional and redundant, relies on daily action, and requires effort to be expended by personnel at many organizations to achieve the same task. Within Utah, epidemiologists and physicians at health departments and health care institutions were reviewing the situation and new guidance daily to identify changes, determine a response, and craft messages. Each source would then attempt to communicate directly with clinicians, resulting in communication overload. An organizational
communication model described by Te’eni et al may explain communication problems we observed. They propose that action-oriented messages intending to improve clinical decision-making should contextualize the information and use short, structured messages. These principles may improve the design of e-mails and Web sites and allow the clinician to quickly identify new information.

The survey provided unique information about communication during a public health emergency. Clinicians reported using public health Web sites, but not frequently enough to keep up with frequent changes. While most clinicians reported receiving e-mail from multiple sources, most clinicians affiliated with an institution preferred their institutional source for guidance about testing and treatment. Given the potential for communication overload and preference for institutional sources, public health emergency communication plans should bring together public health agencies as sources of accurate information with existing institutional communication channels to distribute guidance to their affiliated clinicians. This could maximize the benefits of consistent and authoritative technical recommendations developed by national and state subject-matter experts and the trusted and convenient aspects of institutional resources. In the future, the increasing use of electronic health records may enable the distribution of public health alerts directly within the clinician workflow.

The qualitative analysis of comments from the frontline clinicians provided a synthesis of communication problems and suggestions for improvement. The most important suggestions included the following: (1) limit e-mail to a single credible source, such as the chief medical officer from the local health care institution, (2) identify new information so clinicians do not have to search for it, and (3) note when local recommendations differ from CDC recommendations and explain why differences exist. These findings support previous empiric and qualitative information was provided by 141 experienced clinicians throughout Utah. In addition, the low response rate may have introduced bias that underestimates communication problems. The clinicians who responded to our e-mail may have been more technologically competent and less overwhelmed with e-mail than clinicians who did not respond. It is also possible, though, clinicians with a higher level of frustration were more motivated to complete the survey. Despite these limitations, the qualitative findings support the process analysis and survey results and provide rich details about the frontline clinician’s experience with communication during the midst of a public health emergency. Our findings provide more comprehensive and objective information about communication with frontline clinicians during the pandemic than described in recent publications.

Our study results informed the communication plan in Utah for the second wave of the outbreak (Figure 1). During the second wave, the incidence of disease worsened; however, based on the author’s experience (P.G., M.A., J.S., S.M., R.R., A.T.P., B.W., I.R., A.V.G., and C.L.B.), changes in communication allowed the state to respond effectively to the second wave of the pandemic and for clinicians and hospitals to provide care for patients with H1N1 infection while maintaining normal operating procedures.

Our study has several limitations. First, the survey response rate was low. Physician surveys often have low response rates and this survey was undertaken during a public health emergency. Nevertheless, objective and qualitative information was provided by 141 experienced clinicians throughout Utah. In addition, the low response rate may have introduced bias that underestimates communication problems. The clinicians who responded to our e-mail may have been more technologically competent and less overwhelmed with e-mail than clinicians who did not respond. It is also possible, though, clinicians with a higher level of frustration were more motivated to complete the survey. Despite these limitations, the qualitative findings support the process analysis and survey results and provide rich details about the frontline clinician’s experience with communication during the midst of a public health emergency. Our findings provide more comprehensive and objective information about communication with frontline clinicians during the pandemic than described in recent publications.

Our study results informed the communication plan in Utah for the second wave of the outbreak (Figure 1). During the second wave, the incidence of disease worsened; however, based on the author’s experience (P.G., M.A., J.S., S.M., R.R., A.T.P., B.W., I.R., A.V.G., and C.L.B.), changes in communication allowed the state to respond effectively to the second wave of the pandemic and for clinicians and hospitals to provide care for patients with H1N1 infection while maintaining normal operating procedures.

Our study has several limitations. First, the survey response rate was low. Physician surveys often have low response rates and this survey was undertaken during a public health emergency. Nevertheless, objective and qualitative information was provided by 141 experienced clinicians throughout Utah. In addition, the low response rate may have introduced bias that underestimates communication problems. The clinicians who responded to our e-mail may have been more technologically competent and less overwhelmed with e-mail than clinicians who did not respond. It is also possible, though, clinicians with a higher level of frustration were more motivated to complete the survey. Despite these limitations, the qualitative findings support the process analysis and survey results and provide rich details about the frontline clinician’s experience with communication during the midst of a public health emergency. Our findings provide more comprehensive and objective information about communication with frontline clinicians during the pandemic than described in recent publications.

● Conclusion

During a public health emergency, frontline clinicians would prefer a single source of authoritative information and the ability to easily recognize new information or information specific to their location or practice that differs from national sources. Clinicians often prefer to receive information from their health care institution. Therefore, when developing strategies to communicate during public health emergencies, planners should consider distribution networks within health care organizations and institutions in their jurisdiction. Public health authorities can collaborate with these institutions to distribute public health messages to affiliated clinicians. We recommend a single e-mail from an institution with any differences from national or state guidance explicitly explained.

REFERENCES

References:

22. 2008 Utah Healthcare Access Survey, Office of Public Health Assessment, Utah Department of Health. Special data request, June 22, 2010. For more information, please contact Kimberly Partain McNamara (kmcnamara@utah.gov) or Jennifer Wrathall (JWRATHA@utah.gov).

Copyright © 2011 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
Public Health Communication with Utah Clinicians During the 2009 Pandemic
Carrie L. Byington, MD, FAAP
HA and Edna Benning Presidential Professor of Pediatrics
University of Utah
Vice Chair AAP COID

Goal for Communication
Clinicians must be able to identify the authoritative and appropriate source for clinical guidance among the variety of messages available from federal, state, and local public health authorities, professional organizations, and their own institutions.

Wave 1 Communication Process Analysis

Survey
- Primary Care Physicians
 - University of Utah
 - Intermountain Healthcare
 - Unaffiliated Rural
- 509 surveyed with 141 responding (28%)
 - ~ Half reported at least 25% of patients < 18 years
Primary Sources of Information

<table>
<thead>
<tr>
<th></th>
<th>Institutional</th>
<th>Local/State Health Dept</th>
<th>CDC</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who and How to Test</td>
<td>60%</td>
<td>22%</td>
<td>13%</td>
<td>6%</td>
</tr>
<tr>
<td>Treatment</td>
<td>55%</td>
<td>13%</td>
<td>28%</td>
<td>4%</td>
</tr>
<tr>
<td>Patient Education Materials</td>
<td>32%</td>
<td>16%</td>
<td>40%</td>
<td>11%</td>
</tr>
</tbody>
</table>

Problems Identified

- Multiple sources of information
- Conflicting messages
- Frequent changes
- “Feeling over-whelmed by information”
- Want information from a single trusted source
 - Prefer their home institution

Solutions

- Task Force
 - Meets daily and crafts single message
 - New items are bulleted
 - If advice is different from past or from national sources, reason is explained
- Single message each day (week) from Chief Medical Officer
- Pediatric Hospital coordinated with task force and AAP to deliver accurate messaging for children
Pediatric Partnerships to Promote Pandemic Preparedness

- Utah
 - 1/3 of population is under 18
 - Important Players:
 - Utah Department of Health, VFC Program, Utah Statewide Immunization Information System
 - 12 Autonomous Health Districts
 - 2 Large integrated health systems: University of Utah Health System, Intermountain
 - 1 Children’s Hospital: Primary Children’s Medical Center
 - Utah Chapter AAP
 - Utah Chapter AAFP
 - State Emergency Operations Center

Communication Efforts During the 2009 H1N1 Pandemic:

E-mail listserves from:
 - CDC
 - Utah Department of Health
 - Chief Medical Officers of the Health Systems

Web Sites:
 - CDC
 - Utah Department of Health
 - Germwatch

USIIS was used for quick assessments of vaccine inventories

What Worked?

Survey of Utah Clinicians During the Pandemic

- “Public Health Communication with Frontline Clinicians During the First Wave of the 2009 Influenza Pandemic” Stares, C.J. et al
- J Public Health Management Practice, 2011, 17(1), 36-44
- 141 Respondants of 509 surveyed
- Results:
 - 68% received e-mail/fax from UDOH
 - 21% received e-mail from CDC
 - 100% of clinicians employed by the University System or Intermountain received e-mail from their Chief Medical Officer
 - 68% of non-affiliated, small, or rural practices also received the e-mails from Intermountain

Survey of Utah Clinicians During the Pandemic

- Web Sites:
 - 53% visited CDC web site
 - 35% visited UDOH web site
 - 38% visited their institutional web site
 - 1/3 read MMWR
Communication: What did not work well?

Information Overload:
in the survey, 61% received e-mail from 2 to 4 sources

"those receiving e-mail from **one** of the sources were
significantly more likely to report the amount was "just right"."

those receiving e-mail from **3** of the sources were more
likely to report that the amount was "too much"

Suggestions:

- First, a metaphor change. Communication is not a "pipeline" pouring
out information, (and certainly not three pipelines pouring out three
slightly different versions of that information), but an exchange. Like
the hand-off of a baton in a relay, the passing of information critically
depends on the readiness and trust-level of the receiver. No matter how
accurate the information, if the recipient doesn’t fully trust its validity,
or its source, or can’t easily wade through the complexity of the
information to confirm its validity himself, then the message is lost.
The baton is dropped. Consistently having the information delivered
by a known and trusted spokesman, or having the information vetted
through trusted local medical organizations, ensures better pass-
through of the information.

Action Steps:

- Emergency Operations Center
 - Staffed by already trusted spokespersons/experts.
 - The spokespersons should represent the local organizations (AAP, AAFP,
Hospital Systems, etc) who as a committee will vet the information, and
give a local stamp of approval.
 - Two-way communication back to this committee. Improves trust.
 - All messages should be time-stamped, include the logo of the vetting
organizations, and clearly identify any new changes.
 - All interactions with local media should be referred to the committee.
Strategic Communications and Systematic Messaging

Susan Penfield, MD
April 27, 2011

Key Challenges
- Everything is bigger...
 - Size of state complicates disaster response
 - 254 counties
- Regional variability
 - Demographic
 - Socioeconomic
 - Environmental
 - Public health infrastructure

Action Steps
- Develop regional sentinel network
 - Quantify current demand for pediatric services
 - Quantify current remaining capacity
 - Report on status of critical supplies and limited resources
 - Report on efficacy of public health efforts at the points of care
 - Network could post on AAP Chapter website or Facebook page

Action Steps
- Develop regional communication directors
 - Coordinate with the Department of State Health Services (DSHS) to create systematic messaging relevant to the pediatric population
 - Coordinate with local PH
 - Message for clinician vs. general public
 - Provide immediate pediatric consultation to PH
Action Steps

- Develop regional communication directors
 - Match resources with message content
 - Plan for various responses to message
 - Manage expectations
 - Minimize variability of message
 - "Trusted Leader"

Action Steps

- Schedule episodic topic-specific meetings
 - Conference calls vs. webinars
 - Disease/disaster burden; testing; treatment
 - Surge burden and capacity data by region
 - Primary and secondary prevention
 - Create archive for offline review
 - Ensures right topical message gets to right people

Action Steps

- Pre-disaster planning and preparedness
 - Establish partnerships
 - "Normal" communication with partners
 - Enhanced communication and coordination during a disaster
Pandemic Preparedness
Strategic Communications & Systematic Messaging

California District 9 (AAP-CA)
American Academy of Pediatrics
April 2011

Communication priorities for CA FAAPs

- Communications about supplies
 - Why haven’t I received vaccine?
 - Why don’t I have more vaccine
 - When will I get vaccine?
 - Why do others have more vaccine than I do?

- Conflicting or delayed messages
 - Eligibility or distribution varying by jurisdiction
 - Rapidly changing messages
 - School closures

Goals vs. Challenges
for Planning and Communications

Goals
- Ample supplies
 - Countermeasure
 - Data for rational planning

- Predictability
 - Clear Expectations

- Consistency
 - Clarity, Equity
 - Single information resource

- Responsiveness
 - Recourse

- Consistency
 - Clarity, Equity
 - Single information resource

- Responsiveness
 - Recourse

- Flexibility, Nimbleness

Challenges
- Scarcity

- Changeability

- Local variability/flexibility

- Size of California

- Information incomplete or divided between parties

California H1N1 strategies included

- CDPH H1N1 Website
 - Registered >14,000 vaccinators
 - Uni-directional vaccinator listserv
 - Updates, reminders, etc.
 - Information & training
 - Storage, handling, administration, disease control
 - Electronic signature of federal provider agreement
 - Placing orders
 - 10 M doses shipped
 - Reporting doses administered

- Key Websites, Listservs
 - Local Health Departments
 - CDC
 - CAHAN (CA Health Alert)
 - Organizational
 - Institutional

- Weekly Teleconferences
 - Key Stakeholders

- Media
 - Press Conferences
 - Billboards, PSAs
 - Social Media: Texting, Facebook
Multiple resources

AAP-CA Workplan Includes

- Communication to minimize inconsistency of messages
- Bi-directional listserv
- Data: Practice database to facilitate appropriate prioritization of scarce resources
 - Could also enhance communications

Thank you for your efforts in pandemic preparedness!