Genetic Testing in Primary Care

Lee Zellmer, MS, CGC

December 12, 2013

Genetics in Your Practice Webinar Series
Presented by the Genetics in Primary Care Institute
Faculty

• Lee Zellmer, MS, CGC
 – ABCG-certified genetic counselor
 – Children’s Mercy Hospital’s first Laboratory Genetic Counselor
Ms Zellmer has no financial relationships or conflicts of interest to disclose relevant to this presentation.
Acknowledgements

Funding for the GPCI is provided by the Health Resources & Services Administration/Maternal & Child Health Bureau, Genetic Services Branch
Learning Objectives

1. Develop a clear understanding of the two basic categories of genetic variation/mutation
2. Develop a basic understanding of the types of genetic testing used to identify these variants and the limitations of each methodology
Basic Training

• DNA
 – Chemical structure is made up of four different bases
 • A (Adenine)
 • C (Cytosine)
 • G (Guanine)
 • T (Thymine)
• DNA is converted into RNA and then translated into protein
• DNA bases are “read” in groups of three
• Each codon (three bases) is specific for a single amino acid
Basic Training

- A **gene** is a stretch of DNA sequence needed to make a functional product.
Basic Training

• Each gene has untranslated parts that help with “processing”
 • Introns
 • Promotors
 • Splice sites
 • Regulatory sequences
Basic Training

• A nuclear DNA strand is wound very tightly with proteins to form an independent structure called a chromosome.
Basic Training

• An individual’s complete DNA sequence, containing the entire genetic information, is referred to as the genome

• The exome is the coding region of the entire genome
Back to the mission...

• When ordering a genetic test, it is critical to understand what type of genetic change you want to detect

• Genetic change occurs in two main categories:
 – Dosage
 – Sequence
Dosage Disorders

• Correct gene dosage is critical for typical human development
• Example of gene “overdose” is Trisomy 21 Down syndrome
• Example of gene “underdose” is Cri-du-Chat syndrome, caused by deletion of part of chromosome 5
• Dosage disorders can affect many genes at once
Dosage Disorders

<table>
<thead>
<tr>
<th>Name</th>
<th>Region</th>
<th>Type</th>
<th>Test to detect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down syndrome</td>
<td>21</td>
<td>Duplication</td>
<td>Karyotype</td>
</tr>
<tr>
<td>Turner</td>
<td>X</td>
<td>Deletion</td>
<td>Karyotype</td>
</tr>
<tr>
<td>DiGeorge/VCF</td>
<td>22q11.2</td>
<td>Deletion</td>
<td>FISH/CGH</td>
</tr>
<tr>
<td>Wolf-Hirschhorn</td>
<td>4p16</td>
<td>Deletion</td>
<td>FISH/CGH</td>
</tr>
<tr>
<td>Potocki-Lupski</td>
<td>17p11.2</td>
<td>Duplication</td>
<td>FISH/CGH</td>
</tr>
<tr>
<td>Pallister-Killian</td>
<td>12p</td>
<td>Triplication</td>
<td>Karyotype</td>
</tr>
<tr>
<td>Cat-eye</td>
<td>22q11.1</td>
<td>Triplication</td>
<td>Karyotype</td>
</tr>
<tr>
<td>Steroid sulfatase deficiency (XL ichthyosis)</td>
<td>STS gene on Xp22</td>
<td>Deletion</td>
<td>FISH/CGH</td>
</tr>
<tr>
<td>Duchenne/Becker muscular dystrophy</td>
<td>Parts of the DMD gene</td>
<td>Deletion/duplication</td>
<td>Targeted array</td>
</tr>
</tbody>
</table>
Dosage Testing

• Tests used to detect large dosage changes include:
 – Karyotype (chromosome analysis)
 – FISH analysis
 – Comparative genomic hybridization (microarray)

• Tests used to detect small dosage changes include:
 – Exon-level array
 – DNA methylation analysis
Dosage Testing

• Chromosome analysis is performed using microscopes to look at cells during metaphase (when chromosomes are easiest to see)
Example

Patient #1 is a 10 year old girl with short stature and a broad neck

Patient #2 is a 10 year old girl with short stature and a broad neck
Dosage Testing

- FISH analysis is a targeted technique to look for the presence, absence, and/or relative location of a specific chromosomal area (FISH is not used to “fish” for a diagnosis!)
Example

Patient #3 is a four year old male with developmental delay and hyperphagia

Patient #4 is a four year old male with developmental delay and hyperphagia
Dosage Testing

- Microarray CGH is used to detect sub-microscopic dosage changes but does not look inside individual genes
 - Exon-level targeted microarray can see dosage changes within exons of a specific gene
Dosage Testing

• Microarray compares the amount of probe from your patient with that of a control
Example

Patient #5 is a two year old male with ichthyosis

Patient #6 is a two year old male with ichthyosis
Gene Inactivation

• If your light won’t turn on, there can be more than one reason
 – For example, if you don’t have a light bulb (deletion), you don’t get any light
Gene Inactivation

- However, even if you have all the parts of a lamp but you can’t plug it in because the outlet is covered (gene methylation), you don’t get any light either
Dosage by Inactivation

• Some genes are physically present in the correct dosage but are inactivated by methylation.

• Many genes are supposed to be methylated but abnormal methylation can cause disease.

Methylation changes are also known as epigenetics.
Disorders Best Detected by Methylation Analysis

- Prader-Willi syndrome
- Angelman syndrome
- Beckwith-Wiedemann syndrome
- Russell-Silver syndrome
- UPD14
Sometimes you can’t use just one test!

• To fully understand a genetic change may take multiple methods
You found something!

Patient #9: Microarray shows a duplication

EXAMPLE 1:
Abnormal microarray showing DNA dosage gain on chromosome 17p11.2
But **where** is the duplication?

FISH visualization demonstrates a duplication of 17p11.2.

FISH visualization demonstrates a marker chromosome 17p.
You found something!

Patient #10: FISH for 4p shows a deletion
But how big is the deletion?

2.3 Mb deletion

12.1 Mb deletion
Detectable Range Comparison

- **Karyotyping**
- **FISH**
- **array-CGH** (Resolution depends on probe density)
- **MLPA**
- **Sequencing**

100Mb 10Mb 1Mb 100Kb 10Kb 1Kb 100bp 10bp 1bp
Sequence Variation

• Sequence changes usually affect only one gene
• Most disease-causing sequence changes (mutation) occur in the coding region, resulting in change to the protein structure
DNA Sequencing

• Gold standard for DNA testing; spells out DNA code
 – Very similar to a spell-checker program

• Limitations: why sequencing isn’t 100%
 – You only get data on what you sequence (=coding region)
 – If you only spell check one paragraph, you don’t know if there are errors in the rest of the text
 – You can only sequence what is there (no large deletions)
 – The spell-checker doesn’t tell you whether your sentence makes
 – The clinical significance of many sequence variants is unknown
 – Just because the spell-checker doesn’t recognize a word doesn’t mean it’s spelled incorrectly (proper names like “Zellmer”)

Know which test to order first!

• Most genetic diseases can be caused by either sequencing or dosage errors

• Examples:
 – Rett syndrome: 85% sequencing; 15% dosage
 – DMD: 85% dosage; 15% sequencing errors
 – Pelizaeus Merzbacher: 60% dosage; 25% seq
Interpreting the Results

• Nomenclature
 – Cytogenetic nomenclature
 – Molecular genetic nomenclature

• Significance
 – Polymorphisms
 – VUS (variant of unknown significance)
Cytogenetic Nomenclature

• Chromosome analysis
 – 46,XX or 46,XY (normal)
 – 47,XX,+21 means female with Down syndrome
 – 46,XX,del(3)(p12) means female with 46 chromosomes with a deletion of part of one chromosome 3 on the short arm (p) at band 12
 – 46,XY,dup(14)(q22q25) means a male with a duplication of part of one chromosome 14 on the long arm (q) involving bands 22 to 25
 – Other abbreviations include “t,” “inv,” “r” “mar” “der” and many more
Cytogenetic Nomenclature

- **Array CGH results**
 - arr (1-22,X)x2 (*normal female*)
 - arr(1-22)x2,(XY)x1 (*normal male*)
 - arr 4q28.3qter(134,293,639-qter)x3 (*duplication of 4q*)
 - arr 12q24.33qter(131,203,633-qter)x1 (*deletion of 12q*)

- **FISH results**
 - 46,XX.ish Xp22(SHOXx2),Xp11.1q11.1(DXZ1x2)[20] nuc ish(SHOX,DXZ1)x2[200] (*normal*)
 - 46,XY.ish del(22)(q11.2q11.2)(HIRA-)[20] nuc ish(HIRAx1)[10] (*22q deletion*)
Molecular Genetic Nomenclature

- All sequence variants are described at the DNA level, in relation to a coding reference sequence.
 - c.83G>A means the “G” that should be at the 83rd position has been changed to an “A”
- Sequence variants are also described at the protein level, in relation to the protein reference sequence.
 - p.Val312Ala or p.V312A means that the valine that should be the 312th amino acid has been changed to an alanine

Exon 11: ...GAGTCA

Exon 12: GT ... CCGTAT...

Intron: GT ... AG...

711 +1 +2...

-2 -1... 712
Types of Mutations

- **Silent mutations:** p.E315E (c.945G>A)
- **Missense mutations:** p.C282Y or p.Cys282Tyr.
- **Nonsense mutations:** p.W1282X or p.Trp1282Stop
 - End up with a truncated protein
- **Frameshift:** p.R97fs or p.Arg97fs (c.33delT)
 - Means that a base has been added or deleted which has thrown the reading frame out of whack and all amino acids after that point are wrong
WARNING:

• Not all genetic changes cause disease!
• There are many, many polymorphisms in the genome, in both dosage and sequence.
• 46,XY, inv(9)(p11q13) sounds significant but is found in many people and doesn’t cause problems – this is not a chromosome abnormality!
• If not previously reported as disease causing or benign and status is uncertain, these changes are called a “variant of unknown significance.”
• Family history and testing is the best way to figure out significance.
Patient #11: 6 year-old boy with DD and dysmorphic features

- Tested for panel of 96 XLID genes
- VUS detected in OFD1
- Determined not pathogenic based on presence in unaffected brother
Test Type Summary

• General (I don’t know precisely what I’m looking for)
 – Chromosome analysis
 – Microarray CGH
 – Multigene panels
 • Epilepsy (58 genes)
 • Developmental delay in males (90 genes)
Test type summary

• Specific (I’m concerned about a specific disorder)
 – FISH (for a specific microdeletion disorder)
 – Gene sequencing/dosage (must know which gene)
“Half” an Answer

• In recessive conditions, you need both copies of the gene to be altered in order to show symptoms.
• Many times testing reveals only one mutation.
• Where’s the other mutation?
 – A1: Maybe it’s deleted. Try exon-level del/dup analysis.
 – A2: The second mutation is in a non-coding region.
 – A3: Patient’s problem is due to a different gene.
One mutation in a recessive disorder

- Where’s the other mutation?
 - A1: Maybe it’s deleted. Try exon-level del/dup analysis.
 - A2: The second mutation is in a non-coding region.
 - A3: Patient’s problem is due to a different gene.

Patient 14: 10-month-old Caucasian male with developmental delay, bilateral cherry red spots with retinal pallor and increased startle response. Positive enzyme testing for Tay Sachs.

- One copy c.1277_1278insTATC in HEXA
- Exon array shows partial deletion of other allele.
One mutation in a recessive disorder

- Where’s the other mutation?
 - A1: Maybe it’s deleted. Try exon-level del/dup analysis.
 - A2: The second mutation is in a non-coding region.
 - A3: Patient’s disease is due to a different gene.

Patient #15: 2 year-old girl with clinical presentation and specific lab findings consistent with recessive disease, HLH.

- Heterozygous for c.2346_2349 del GGAG (R782fsX793) in the UNC13-4 gene.
- This result in combination with clinical scenario and decreased NK function, supports a familial basis to this patient's disease.
One mutation in a recessive disorder

• Where’s the other mutation?
 – A1: Maybe it’s deleted. Try exon-level del/dup analysis.
 – A2: The second mutation is in a non-coding region.
 – A3: Patient’s problem is due to a different gene.

Case 6: 4 month old boy with failure to thrive, passed NBS for CF. CFTR mutation testing ordered.
• Positive for one copy deltaF508.
• Subsequent negative sweat chloride testing.
• Conclude baby is CF carrier (1/29 in general population).
Conclusions

• Karyotype, FISH, microarray, methylation testing, exon-level array and sequencing all detect different sizes and types of mutations.

• The correct test depends on disease/gene suspected; often more than one test is required.

• Interpretation is guided by type of mutation, clinical scenario, family studies, and may be unclear despite best efforts.

• May be complicated—contact your friendly lab genetic counselor for help!
Questions
Thank you for your participation!

For more information, please contact

Jennie Vose
jvose@aap.org
847/434-7612

www.GeneticsinPrimaryCare.org